Skip to main content
Log in

Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea-hypopnea syndrome

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Strategies designed to reduce adiposity and cardiovascular-accompanying manifestations have been based on nutritional interventions conjointly with physical activity programs. The aim of this 13-week study was to investigate the putative benefits associated to hypoxia plus exercise on weight loss and relevant metabolic and cardiorespiratory variables, when prescribed to obese subjects with sleep apnea syndrome following dietary advice. The participants were randomly distributed in the following three groups: control, normoxia, and hypoxia. All the subjects received dietary advice while, additionally, normoxia group was trained under normal oxygen concentration and Hypoxia group under hypoxic conditions. There was a statistically significant decrease in fat-free mass (Kg) and water (%) on the control compared to normoxia group (p < 0.05 and p < 0.01, respectively). Body weight, body mass index, and waist circumference decreased in all the groups after the study. Moreover, leukocyte count was increased after the intervention in hypoxia compared to control group (p < 0.05). There were no statistically significant variations within groups in other variables, although changes in appetite were found after the 13-week period. In addition, associations between the variations in the leukocyte count and fat mass have been found. The hypoxia group showed some specific benefits concerning appetite and cardiometabolic-related measurements as exertion time and diastolic blood pressure, with a therapeutical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abete I, Parra D, De Morentin BM, Alfredo Martinez J (2009) Effects of two energy-restricted diets differing in the carbohydrate/protein ratio on weight loss and oxidative changes of obese men. Int J Food Sci Nutr 60(Suppl 3):1–13

    Article  CAS  PubMed  Google Scholar 

  2. Agostoni P, Valentini M, Magri D, Revera M, Caldara G, Gregorini F, Bilo G, Styczkiewicz K, Savia G, Parati G (2008) Disappearance of isocapnic buffering period during increasing work rate exercise at high altitude. Eur J Cardiovasc Prev Rehabil 15(3):354–358

    Article  PubMed  Google Scholar 

  3. Aller EE, Abete I, Astrup A, Martinez JA, van Baak MA (2011) Starches, sugars and obesity. Nutrients 3(3):341–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Araghi MH, Chen YF, Jagielski A, Choudhury S, Banerjee D, Hussain S, Thomas GN, Taheri S (2013) Effectiveness of lifestyle interventions on obstructive sleep apnea (OSA): systematic review and meta-analysis. Sleep 36(10):1553–1562, 1562A-1562E

    PubMed Central  PubMed  Google Scholar 

  5. Arena R, Cahalin LP (2014) Evaluation of cardiorespiratory fitness and respiratory muscle function in the obese population. Prog Cardiovasc Dis 56(4):457–464

    Article  PubMed  Google Scholar 

  6. Babio N, Ibarrola-Jurado N, Bullo M, Martinez-Gonzalez MA, Warnberg J, Salaverria I, Ortega-Calvo M, Estruch R, Serra-Majem L, Covas MI et al (2013) White blood cell counts as risk markers of developing metabolic syndrome and its components in the PREDIMED study. PLoS ONE 8(3):e58354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M et al (2010) Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122(2):191–225

    Article  PubMed  Google Scholar 

  8. Bondia-Pons I, Ryan L, Martinez JA (2012) Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem 68(4):701–711

    Article  CAS  PubMed  Google Scholar 

  9. de la Iglesia R, Lopez-Legarrea P, Abete I, Bondia-Pons I, Navas-Carretero S, Forga L, Martinez JA, Zulet MA (2014) A new dietary strategy for long-term treatment of the metabolic syndrome is compared with the American Heart Association (AHA) guidelines: the metabolic syndrome reduction in Navarra (RESMENA) project. Br J Nutr 111(4):643–652

    Article  PubMed  Google Scholar 

  10. Debevec T, McDonnell AC, Macdonald IA, Eiken O, Mekjavic IB (2014) Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity. Appl Physiol Nutr Metab 39(3):386–395

    Article  CAS  PubMed  Google Scholar 

  11. Dewan NA, Nieto FJ, Somers VK (2015) Intermittent hypoxemia and OSA: implications for comorbidities. Chest 147(1):266–274

    Article  PubMed  Google Scholar 

  12. Duran-Cantolla J, Aizpuru F, Martinez-Null C, Barbe-Illa F (2009) Obstructive sleep apnea/hypopnea and systemic hypertension. Sleep Med Rev 13(5):323–331

    Article  PubMed  Google Scholar 

  13. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Pina IL, Rodney R et al (2001) Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104(14):1694–1740

    Article  CAS  PubMed  Google Scholar 

  15. Foster GD, Borradaile KE, Sanders MH, Millman R, Zammit G, Newman AB, Wadden TA, Kelley D, Wing RR, Pi-Sunyer FX et al (2009) A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: the sleep AHEAD study. Arch Intern Med 169(17):1619–1626

    Article  PubMed Central  PubMed  Google Scholar 

  16. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  PubMed  Google Scholar 

  17. Girgis CM, Cheng K, Scott CH, Gunton JE (2012) Novel links between HIFs, type 2 diabetes, and metabolic syndrome. Trends Endocrinol Metab 23(8):372–380

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Muniesa P, Quintero P, De Andres J, Martinez JA (2014) Hypoxia: a consequence of obesity and also a tool to treat excessive weight loss. Sleep Breath

  19. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JW, Cajlakovic M, Ribitsch V, Clement K et al (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124(1):67–76

    Article  CAS  PubMed  Google Scholar 

  20. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159(4):738–749

    Article  CAS  PubMed  Google Scholar 

  21. Kayser B, Verges S (2013) Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev 14(7):579–592

    Article  CAS  PubMed  Google Scholar 

  22. Kong Z, Zang Y, Hu Y (2014) Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breath 18(3):591–597

    Article  PubMed  Google Scholar 

  23. Lee YS, Kim JW, Osborne O, da Oh Y, Sasik R, Schenk S, Chen A, Chung H, Murphy A, Watkins SM et al (2014) Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 157(6):1339–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lippl FJ, Neubauer S, Schipfer S, Lichter N, Tufman A, Otto B, Fischer R (2010) Hypobaric hypoxia causes body weight reduction in obese subjects. Obesity (Silver Spring) 18(4):675–681

    Article  Google Scholar 

  25. Lippl FJ, Neubauer S, Schipfer S, Lichter N, Tufman A, Otto B, Fischer R (2010) Hypobaric hypoxia causes body weight reduction in obese subjects. Obesity (Silver Spring) 18(4):675–681

    Article  Google Scholar 

  26. Lopez-Fontana CM, Sanchez-Villegas A, Martinez-Gonzalez MA, Martinez JA (2009) Daily physical activity and macronutrient distribution of low-calorie diets jointly affect body fat reduction in obese women. Appl Physiol Nutr Metab 34(4):595–602

    Article  CAS  PubMed  Google Scholar 

  27. Lumachi F, Marzano B, Fanti G, Basso SM, Mazza F, Chiara GB (2010) Relationship between body mass index, age and hypoxemia in patients with extremely severe obesity undergoing bariatric surgery. Vivo 24(5):775–777

    CAS  Google Scholar 

  28. Malekmohammad M, Ahmadi-Nejad M, Adimi P, Jamaati HR, Marashian SM (2012) Evaluation of maximum O2 consumption: using ergo-spirometry in severe heart failure. Acta Med Iran 50(9):619–623

    PubMed  Google Scholar 

  29. Martens EA, Westerterp-Plantenga MS (2014) Protein diets, body weight loss and weight maintenance. Curr Opin Clin Nutr Metab Care 17(1):75–79

    CAS  PubMed  Google Scholar 

  30. Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34(4):782–812

    Article  CAS  PubMed  Google Scholar 

  31. Mohebbi H, Nourshahi M, Ghasemikaram M, Safarimosavi S (2015) Effects of exercise at individual anaerobic threshold and maximal fat oxidation intensities on plasma levels of nesfatin-1 and metabolic health biomarkers. J Physiol Biochem 71(1):79–88

    Article  CAS  PubMed  Google Scholar 

  32. Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 307(10):R1181–R1197

    Article  CAS  PubMed  Google Scholar 

  33. Netzer NC, Chytra R, Kupper T (2008) Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath 12(2):129–134

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ozeke O, Ozer C, Gungor M, Celenk MK, Dincer H, Ilicin G (2011) Chronic intermittent hypoxia caused by obstructive sleep apnea may play an important role in explaining the morbidity-mortality paradox of obesity. Med Hypotheses 76(1):61–63

    Article  PubMed  Google Scholar 

  35. Palmer BF, Clegg DJ (2014) Ascent to altitude as a weight loss method: the good and bad of hypoxia inducible factor activation. Obesity (Silver Spring) 22(2):311–317

    Article  Google Scholar 

  36. Prommer N, Heinicke K, Viola T, Cajigal J, Behn C, Schmidt WF (2007) Long-term intermittent hypoxia increases O2-transport capacity but not VO2max. High Alt Med Biol 8(3):225–235

    Article  PubMed  Google Scholar 

  37. Querido JS, Sheel AW, Cheema R, Van Eeden S, Mulgrew AT, Ayas NT (2012) Effects of 10 days of modest intermittent hypoxia on circulating measures of inflammation in healthy humans. Sleep Breath 16(3):657–662

    Article  PubMed  Google Scholar 

  38. Quintero P, Gonzalez Muniesa P, Martinez JA (2012) Influence of different oxygen supply on metabolic markers and gene response in murine adipocytes. J Biol Regul Homeostatic Agents 26(3):379–388

    CAS  Google Scholar 

  39. Quintero P, Milagro F, Campión J, Martínez J (2010) Impact of oxygen availability on body weight management. Med Hypotheses 74(5):901–907

    Article  CAS  PubMed  Google Scholar 

  40. Romeo J, Jimenez-Pavon D, Cervantes-Borunda M, Warnberg J, Gomez-Martinez S, Castillo MJ, Marcos A (2008) Immunological changes after a single bout of moderate-intensity exercise in a hot environment. J Physiol Biochem 64(3):197–204

    Article  CAS  PubMed  Google Scholar 

  41. Sheu WH, Chang TM, Lee WJ, Ou HC, Wu CM, Tseng LN, Lang HF, Wu CS, Wan CJ, Lee IT (2008) Effect of weight loss on proinflammatory state of mononuclear cells in obese women. Obesity (Silver Spring) 16(5):1033–1038

    Article  CAS  Google Scholar 

  42. Shore SA (2011) Environmental perturbations: obesity. Compr Physiol 1(1):263–282

    PubMed Central  PubMed  Google Scholar 

  43. Snow JB, Kitzis V, Norton CE, Torres SN, Johnson KD, Kanagy NL, Walker BR, Resta TC (2008) Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. J Appl Physiol (1985) 104(1):110–118

    Article  CAS  Google Scholar 

  44. Stewart A, Marfell-Jones M, Olds T, de Ridder H (2011) International standards for anthropometric assessment. ISAK, Lower Hutt

    Google Scholar 

  45. Thorand B, Zierer A, Baumert J, Meisinger C, Herder C, Koenig W (2010) Associations between leptin and the leptin / adiponectin ratio and incident type 2 diabetes in middle-aged men and women: results from the MONICA/KORA Augsburg Study 1984–2002. Diabet Med 27(9):1004–1011

    Article  CAS  PubMed  Google Scholar 

  46. Togeiro SM, Carneiro G, Ribeiro Filho FF, Zanella MT, Santos-Silva R, Taddei JA, Bittencourt LR, Tufik S (2013) Consequences of obstructive sleep apnea on metabolic profile: a population-based survey. Obesity (Silver Spring) 21(4):847–851

    Article  CAS  Google Scholar 

  47. Trape AA, Jacomini AM, Muniz JJ, Sertorio JT, Tanus-Santos JE, do Amaral SL, Zago AS (2013) The relationship between training status, blood pressure and uric acid in adults and elderly. BMC Cardiovasc Disord 13:44–2261, 13-44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Trayhurn P (2014) Hypoxia and adipocyte physiology: Implications for adipose tissue dysfunction in obesity. Annu Rev Nutr 34:207–236

    Article  CAS  PubMed  Google Scholar 

  49. Tuomilehto H, Seppa J, Uusitupa M (2013) Obesity and obstructive sleep apnea—clinical significance of weight loss. Sleep Med Rev 17(5):321–329

    Article  PubMed  Google Scholar 

  50. Urdampilleta A, Gonzalez-Muniesa P, Portillo MP, Martinez JA (2012) Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J Physiol Biochem 68(2):289–304

    Article  CAS  PubMed  Google Scholar 

  51. Vasques AC, Novaes FS, de Oliveira MS, Souza JR, Yamanaka A, Pareja JC, Tambascia MA, Saad MJ, Geloneze B (2011) TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract 93(3):e98–e100

    Article  CAS  PubMed  Google Scholar 

  52. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, Napoli N, Qualls C, Shah K (2011) Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med 364(13):1218–1229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research relating to this work was funded by grants from the Spanish Ministry of Economy and Competitiveness (MINECO EXPLORA) [SAF2010-11630-E], Carlos III Health Institute Centre of Biomedical Research Network: CIBERobn Physiopathology of Obesity and Nutrition, CIBERes Respiratory diseases, Línea Especial, Nutrición y Obesidad (University of Navarra). Amaya Lopez-Pascual is fully acknowledged for the fellowships to Asociación de Amigos de la Universidad de Navarra (ADA) and the FPU from the Spanish Ministry of Education, Culture and Sport (MECD). We thank all the participants in the trial and the Basque Biobank For Research-OEHUN for their collaboration.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Martinez.

Additional information

P. González-Muniesa, A. Lopez-Pascual and J. de Andrés contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Muniesa, P., Lopez-Pascual, A., de Andrés, J. et al. Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea-hypopnea syndrome. J Physiol Biochem 71, 589–599 (2015). https://doi.org/10.1007/s13105-015-0410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0410-3

Keywords

Navigation