, Volume 69, Issue 3, pp 405-417

Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The question as to whether A3 adenosine receptor (A3AR) agonists, N 6-(3-iodobenzyl)-adenosine-5′-N- methyluronamide (IB-MECA) and 2-chloro-N 6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (Cl-IB-MECA), could exert cytotoxic effects at high concentrations with or without the involvement of A3AR has been a controversial issue for a long time. The initial findings suggesting that A3AR plays a crucial role in the induction of cell death upon treatment with micromolar concentrations of IB-MECA or Cl-IB-MECA were revised, however, the direct and unequivocal evidence is still missing. Therefore, the sensitivity of Chinese hamster ovary (CHO) cells transfected with human recombinant A3AR (A3-CHO) and their counter partner wild-type CHO cells, which do not express any of adenosine receptors, to micromolar concentrations of IB-MECA and Cl-IB-MECA was studied. We observed that IB-MECA and Cl-IB-MECA exhibited a strong inhibitory effect on cell proliferation due to the blockage of cell cycle progression at G1/S and G2/M transitions in both A3-CHO and CHO cells. Further analysis revealed that IB-MECA and Cl-IB-MECA attenuated the Erk1/2 signalling irrespectively to A3AR expression. In addition, Cl-IB-MECA induced massive cell death mainly with hallmarks of a necrosis in both cell lines. In contrast, IB-MECA affected cell viability only slightly independently of A3AR expression. IB-MECA induced cell death that exhibited apoptotic hallmarks. In general, the sensitivity of A3-CHO cells to micromolar concentrations of IB-MECA and Cl-IB-MECA was somewhat, but not significantly, higher than that observed in the CHO cells. These results strongly suggest that IB-MECA and Cl-IB-MECA exert cytotoxic effects at micromolar concentrations independently of A3AR expression.