Skip to main content
Log in

Overlayer Au-on-W Near-Surface Alloy for the Selective Electrochemical Reduction of CO2 to Methanol: Empirical (DEMS) Corroboration of a Computational (DFT) Prediction

  • Letter
  • Published:
Electrocatalysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. Conversion between the pH-independent Ag/AgCl (1 M KCl) reference and the pH-dependent reversible hydrogen electrode (RHE) scale is given by: E RHE = E Ag/AgCl (1 M KCl) + 0.197 + (0.059 × pH). In this study, the pH after CO2 saturation was 6.8; hence, −1.8 V [Ag/AgCl (1 M KCl)] corresponds to −1.2 V (RHE).

References

  1. Y. Hori, in Modern Aspects of Electrochemistry, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer, New York, 2008), p. 89

    Chapter  Google Scholar 

  2. M. Gattrell, N. Gupta, A.J. Co, Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manage. 48, 1255 (2007)

    Article  CAS  Google Scholar 

  3. M. Gattrell, N. Gupta, A.J. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1 (2006)

    Article  CAS  Google Scholar 

  4. Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1, 85, 2309 (1989)

  5. J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631 (2014)

    Article  CAS  Google Scholar 

  6. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012)

    Article  CAS  Google Scholar 

  7. A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251 (2012)

    Article  CAS  Google Scholar 

  8. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010)

    Article  CAS  Google Scholar 

  9. S. Back, H. Kim, Y. Jung, Selective heterogeneous CO2 electroreduction to methanol. ACS Catal. 5, 965 (2015)

    Article  CAS  Google Scholar 

  10. W.J. Durand, A.A. Peterson, F. Studt, F. Abild-Pedersen, J.K. Nørskov, Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 605, 1354 (2011)

    Article  CAS  Google Scholar 

  11. J.C. Slater, Atomic radii in crystals. J. Chem. Phys. 41, 3199 (1964)

    Article  CAS  Google Scholar 

  12. J. Greeley, M. Mavrikakis, Near-surface alloys for hydrogen fuel cell applications. Catal. Today 111, 52 (2006)

    Article  CAS  Google Scholar 

  13. A.S. Bandarenka, A.S. Varela, M. Karamad, F. Calle-Vallejo, L. Bech, F.J. Perez-Alonso, J. Rossmeisl, I.E. Stephens, I. Chorkendorf, Design of an active site towards optimal electrocatalysis: overlayers, surface alloys and near-surface alloys of Cu/Pt(111). Angew. Chem. Int. Ed. 51, 11845 (2012)

    Article  CAS  Google Scholar 

  14. A.S. Varela, C.G. Schlaup, Z.P. Jovanov, P. Malacrida, S. Horch, I.E.L. Stephens, I. Chorkendorff, CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J. Phys. Chem. C 117, 20500 (2013)

    Article  CAS  Google Scholar 

  15. M.C. Weidman, D.V. Esposito, I.J. Hsu, J.G. Chen, Electrochemical stability of tungsten and tungsten monocarbide (WC) over wide pH and potential ranges. J. Electrochem. Soc. 157, F179 (2010)

    Article  CAS  Google Scholar 

  16. C.G. Fink, F.L. Jones, The electrodeposition of tungsten from aqueous solutions. J. Electrochem. Soc. 59, 461 (1931)

    Article  Google Scholar 

  17. H. Baltruschat, in Interfacial Electrochemistry, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), p. 577

    Google Scholar 

  18. H. Baltruschat, Differential electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1693 (2004)

    Article  CAS  Google Scholar 

  19. Z. Jusys, H. Massong, H. Baltruschat, A new approach for simultaneous DEMS and EQCM: electro-oxidation of adsorbed CO on Pt and Pt-Ru. J. Electrochem. Soc. 146, 1093 (1999)

    Article  CAS  Google Scholar 

  20. T. Hartung, H. Baltruschat, Differential electrochemical mass spectrometry using smooth electrodes: adsorption and hydrogen/deuterium exchange reactions of benzene on platinum. Langmuir 6, 953 (1990)

    Article  CAS  Google Scholar 

  21. A. Javier, B. Chmielowiec, J. Sanabria-Chinchilla, Y.-G. Kim, J.H. Baricuatro, M.P. Soriaga, A DEMS study of the reduction of CO2, CO, and HCHO pre-adsorbed on Cu electrodes: empirical inferences on the CO2RR mechanism. Electrocatalysis 6, 127 (2015)

    Article  CAS  Google Scholar 

  22. D. Kealey, P.J. Haines, Instant Notes in Analytical Chemistry (Garland Science, New York, 2002)

    Google Scholar 

  23. S.E. Stein, Mass Spectra, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 1990)

    Google Scholar 

  24. P.D. August, J.P. Jones, The epitaxy of gold on (110) tungsten studied by LEED. Surf. Sci. 64, 713 (1977)

    Article  Google Scholar 

  25. T. Giela, K. Freindl, N. Spiridis, J. Korecki, Au(111) films on W(110) studied by STM and LEED. Uniaxial reconstruction, dislocations and Ag nanostructures. Appl. Surf. Sci. 312, 91 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel P. Soriaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javier, A., Baricuatro, J.H., Kim, YG. et al. Overlayer Au-on-W Near-Surface Alloy for the Selective Electrochemical Reduction of CO2 to Methanol: Empirical (DEMS) Corroboration of a Computational (DFT) Prediction. Electrocatalysis 6, 493–497 (2015). https://doi.org/10.1007/s12678-015-0276-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0276-8

Keywords

Navigation