Skip to main content
Log in

Soil radon (222Rn) monitoring in a forest site in Fukushima, Japan

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Soil radon (222Rn) has been monitored since August 2013 at three different soil depths on a campus forest of Fukushima University in Japan, where a large amount of fallout nuclides were released by the accident of Fukushima Daiichi Nuclear Power Plant in March 2011. The primary purpose of this study is to evaluate 222Rn activity level, variability and factors controlling 222Rn concentration in soil air using data obtained from August to December 2013. Time series of 222Rn activity concentration showed depth-dependent variability with an equilibrium value (222Rneq) during this observation period; 7.5, 14 and 23 kBq m−3 at 0.3, 0.6 and 1.0 m in depth, respectively. Two typhoons passing over the site had a great influence on soil radon level, which was practically used for evaluating effective diffusion coefficient of 222Rn. Transport mechanism of 222Rn in soil air was considered to be diffusion-controlled with data sets on changing 222Rn concentration with time in selected cases that showed decreasing (or increasing) 222Rn concentration with time at every depth. Important factors affecting soil 222Rn variability are meteorological parameters, low-pressure front passing over the site, and subsequent precipitation. Time lags of decreasing 222Rn concentration at different depths after rain indicate a certain relationship of 222Rn level with moving water (and water vapor) in soil. The findings obtained in this study are important to evaluate the fate of fallout nuclides (radiocesium) in contaminated forest sites using soil radon as a tracer of moving soil air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bittelli M, Ventura F, Campbell GS, Snyder RL, Gallegati F, Pisa PR (2008) Coupling of heat, watervapor, and liquid water fluxes to compute evaporation in bare soils. J Hydrol 362:191–205

    Article  Google Scholar 

  • Dörr H, Münnich KO (1990) 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone. Tellus 42B:20–28

    Article  Google Scholar 

  • Dörr H, Kromer B, Levin L, Munnich KO, Volpp HJ (1983) CO2 and radon 222 as tracers for atmospheric transport. J Geophys Res Ocean 88:1309–1313

    Article  Google Scholar 

  • Fujiyoshi R, Sawamura T (2004) Mesoscale variability of vertical profiles of environmental radionuclides (40K, 226Ra, 210Pb and 137Cs) in temperate forest soils in Germany. Sci Total Environ 320:177–178

    Article  Google Scholar 

  • Fujiyoshi R, Kinoshita M, Sawamura S (2005) Variation of 222Rn activity concentrations in soil gas at a site in Sapporo, Japan. Environ Geochem Health 27:539–547

    Article  Google Scholar 

  • Fujiyoshi R, Sakamoto K, Imanishi T, Sumiyoshi S, Sawamura S, Vaupotič J, Kobal I (2006) Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo, Japan. Sci Total Environ 370:224–234

    Article  Google Scholar 

  • Fujiyoshi R, Haraki Y, Sumiyoshi T, Amano H, Kobal I, Vaupotič J (2010) Tracing the sources of gaseous components (222Rn, CO2 and its carbon isotopes) in soil air under a cool-temperate deciduous stand in Sapporo. Jpn Environ Geochem Health 32(1):73–82

    Article  Google Scholar 

  • Fujiyoshi R, Yamaguchi T, Okamoto K, Sumiyoshi T, Kobal I, Vaupotič J (2011) Tracing depositional consequences of environmental radionuclides (137Cs and 210Pb) in Slovenian forest soils. Cent Eur J Geosci 3(3):291–301

    Article  Google Scholar 

  • Fujiyoshi R, Okabayashi M, Sakuta Y, Okamoto K, Sumiyoshi T, Kobal I, Vaupotič J (2013) Soil radon in winter months under snowpack in Hokkaido, Japan. Environ Earth Sci 70:1159–1167

    Article  Google Scholar 

  • Fukushima University. http://www.fukushima-u.ac.jp/guidance/top/fukudai-housyasen.html/ (in Japanese) Accessed 12 Jan 2014

  • Hao LC, Nitta M, Fujiyoshi R, Sumiyoshi T, Tao CV (2013) Radiocesium fallout in surface soil of Tomakomai Experimental forest in Hokkaido due to the Fukushima Nuclear Accident. Water Air Soil Pollut 224:1428–1436

    Article  Google Scholar 

  • Hashimoto S, Ugawa S, Nanko K, Shichi K (2012) The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Sci Rep 2:416–420. doi:10.1038/srep00416

    Article  Google Scholar 

  • Kurosawa T, Tsutsumi T, Kikuchi S (2010) Fukushima Daigaku Chiiki Souzou 22(1):103–128 (in Japanese)

  • Nazaroff WW (1992) Radon transport from soil to the air. Rev Geophys 30(2):137–160

    Article  Google Scholar 

  • Neznal M, Neznal M (2005) Permeability as an important parameter for radon risk classification of foundation soils. Ann Geophys 48(1):175–180

    Google Scholar 

  • Perrier F, Girault F (2013) Harmonic response of soil radon-222 flux and concentration induced by barometric oscillations. Geophy J Int 195:945–971

    Article  Google Scholar 

  • Prefecture Fukushima (1982) Fundamental Land Classification Survey (1:50,000). Fukushima Prefecture, Japan (in Japanese)

    Google Scholar 

  • Richon P, Sabroux JC, Halbwachs M, Vandemeulebrouck J, Poussielgue N (2003) Radon anomaly in the soil of Taal volcano, the Philippines: a likely precursor of the M 7.1 Mindoro earthquake (1994). Geophys Res Lett 30(9):1481–1484

    Article  Google Scholar 

  • Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral rock, soil, mill, tailing and fly ash. Appl Radiat Isot 69:1422–1435

    Article  Google Scholar 

  • Science Council of Japan (2012) Recommendations toward making a new step forward in radiation measures-taking actions based on fact-based scientific research. Committee on Supporting Reconstruction after the Great East Japan Earthquake, Science Council of Japan

    Google Scholar 

  • Vaupotič J, Gregorič A, Kobal I, Žvab P, Kozak K, Mazur J, Kochowska E, Grządziel D (2010) Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895–899

    Article  Google Scholar 

  • Wells T, Fityus S, Smith DW (2007) Use of in situ air flow measurements to study permeability in cracked clay soil. J Geotech Geoenviron Eng 133(12):1577–1586

    Article  Google Scholar 

  • Yakovleva VS (2005) A theoretical method for estimating the characteristics of radon transport in homogeneous soil. Ann Geophys 48(1):195–198

    Google Scholar 

  • Zahorowski W, Chambers SD, Henderson-Sellers A (2004) A ground based radon-222 observations and their application to atmospheric studies. J Environ Radioactiv 76:3–33

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Akira Watanabe of the Fukushima University for helping with everything necessary for them to start and continue monitoring on their campus. They greatly acknowledge Mr. Toshihiko Hatano and Mr. Masato Yamakawa of North One Co. Ltd. for preparing a special instrument of micro-barometric pressure measurement in the field. They give special thanks to Dr. Claude Bertrand at Algade (France) for his useful comments and suggestions in radon field monitoring. They appreciate Prof. Emeritus Ivan Kobal of Jozef Stefan Institute in Slovenia who checked the manuscript thoroughly including English grammar. This work has been supported financially by Japan Science and Technology Agency (JST) on a research theme “Multidisciplinary investigation on radiocesium fate and transport for safety assessment for interim storage and disposal of heterogeneous waste” (Tamotsu KOZAKI, Hokkaido University) from 2012 to 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoko Fujiyoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiyoshi, R., Ohno, M., Okamoto, K. et al. Soil radon (222Rn) monitoring in a forest site in Fukushima, Japan. Environ Earth Sci 73, 4135–4142 (2015). https://doi.org/10.1007/s12665-014-3698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3698-3

Keywords

Navigation