Skip to main content

Advertisement

Log in

Dual-flow in karst aquifers toward a steady discharge spring (Presciano, Central Italy): influences on a subsurface groundwater dependent ecosystem and on changes related to post-earthquake hydrodynamics

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Presciano spring system (Central Italy) is fed by a fractured carbonate regional aquifer and shows peculiar hydrogeological, physicochemical, hydrogeochemical and biological features that led to hypothesis about local superimposition of a dual groundwater flow system. The components of this system are fast-flow and baseflow groundwater paths. Hydrogeochemical and isotopic (δ18O and δD for H2O, and δ34 \( {\text{S}}_{{{\text{SO}}_{ 4} }} \) and δ18 \( {\text{O}}_{{{\text{SO}}_{ 4} }} \)) data were used to test this conceptual model. Differences in physico-chemistry and ion concentrations were recorded for two main spring sectors, attributable to different groundwater flowpaths. Environmental isotope analyses allowed distinguishing different recharge areas for the two groups: more depleted values (−10.4 ‰ δ18O and −71 ‰ δD) indicated the existence of a flowpath influenced by a higher elevation recharge area, whereas enriched isotope signals (−9.9 ‰ δ18O and −66 ‰ δD) supported a regional recharge area of local water infiltration. The existence of a dual flow system is also reflected in the relationship between SO4 2− concentration and SO4 2− isotope data. The isotopic pattern of SO4 2− reflects the seasonal contributions by the two flow paths to the springs: after snowmelt, the isotopic sulphate value in the spring outlet is very similar to the spring sector fed by the fast flow component, while, after the spring exhaustion period, its isotopic composition is very similar to the base flow spring sectors fed by the fracture network. The influence of the different flowpaths has also been highlighted by changes in water isotope composition after the 2009 L’Aquila earthquake in this area: the strong homogeneous response of the spring system can be attributed to a cleaning of the fracture system, which affected the aquifer at regional scale. Additional investigations adopting the geoelectrical tomography technique highlighted the possibility of the existence of a buried karst channel or at least high-permeability shear zone at the contact between the carbonate aquifer and the fluvio-lacustrine quaternary deposits, where the spring system is located. Biological indicators, such as groundwater copepods also showed a response to the dual flowpath regime. The results of this study have great relevance for a better management of the Presciano spring habitat, which is increasingly threatened by anthropogenic disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adinolfi Falcone R, Falgiani A, Parisse B, Petitta M, Spizzico M, Tallini M (2008) Chemical and isotopic (δ18O ‰, δ2H ‰, δ13C ‰, 222Rn) multi-tracing for groundwater conceptual model of carbonate aquifer (Gran Sasso INFN underground laboratory: Central Italy). J Hydrol 357:368–388

    Article  Google Scholar 

  • Adinolfi Falcone R, Carucci V, Falgiani A, Manetta M, Parisse B, Petitta M, Rusi S, Spizzico M, Tallini M (2012) Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer due to the 2009 L’Aquila earthquake. Ital J Geosci (Boll Soc Geol Ital) 131:459–474

    Google Scholar 

  • Amoruso A, Crescentini L, Petitta M, Rusi S, Tallini M (2011) Impact of the April 6, 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol Process 25:1754–1764

    Article  Google Scholar 

  • Amoruso A, Crescentini L, Petitta M, Tallini M (2012) Parsimonious recharge/discharge modeling in carbonate fractured aquifers: the groundwater flow in the Gran Sasso aquifer (Central Italy). J Hydrol 476:136–146

    Article  Google Scholar 

  • Bagnaia R, D’Epifanio A, Sylos Labini S (1992) Aquilan and Subequan basins: an example of Quaternary evolution in Central Apennines, Italy. Quat Nova 2:187–209

    Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160

    Article  Google Scholar 

  • Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotopes (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20:2063–2081

    Article  Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884

    Article  Google Scholar 

  • Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for seismic hazard assessment applications: the case of Central Apennines (Italy). J Seismol 8(3):407–425

    Article  Google Scholar 

  • Boni C, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia Centrale (Hydrogeological scheme of Central Italy). Mem Soc Geol Ital 35:991–1012

    Google Scholar 

  • Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. C R Acad Sci 265:369–370

    Google Scholar 

  • Cavinato GP, De Celles PG (1999) Extensional basins in the tectonically bimodal Central Apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology 27:955–958

    Article  Google Scholar 

  • Celico P, Fabbrocino S, Petitta M, Tallini M (2005) Hydrogeological impact of the Gran Sasso motor-way tunnels (Central Italy). Giornale Geol Appl 1:157–165

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Cortecci G, Reyes G, Betti G, Casati P (1981) Sulfur and oxygen isotopes in Italian marine sulphates of Permian and Triassic ages. Chem Geol 34:65–79

    Article  Google Scholar 

  • Dinelli E, Testa G, Cortecci G, Barbieri M (1999) Stratigraphic and petrographic constraint to traced element and isotope geochemistry of Messinian sulphates of Tuscany. Mem Soc Geol Ital 54:61–74

    Google Scholar 

  • Eamus D, Froend R (2006) Groundwater-dependent ecosystems: the where, what and why of GDEs. Aust J Bot 54:91–96

    Article  Google Scholar 

  • Eaton TT, Anderson MP, Bradbury KR (2007) Fracture control of ground water flow and water chemistry in a rock aquitard. Ground Water 45(5):601–615

    Article  Google Scholar 

  • EC-European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun L 327:1–72

    Google Scholar 

  • EC-European Commission (2012) Communication from the commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. A blueprint to Safeguard Europe’s Water Resources, Brussels

    Google Scholar 

  • Emblanch C, Zuppi GM, Mudry J, Blavoux B, Batiot C (2003) Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (Southeastern France). J Hydrol 279:262–274

    Article  Google Scholar 

  • Fiasca B, Di Lorenzo T, De Laurentiis P, Pantani C, Galassi DMP (2004) Biodiversità acquatica sotterranea nel Parco Nazionale del Gran Sasso-Monti della Laga: analisi taxocenotica e proposte di conservazione. Stud Trentini Sci Nat Acta Biol 81:157–166

    Google Scholar 

  • Fiasca B, Stoch F, Olivier MJ, Maazouzi C, Petitta M, Di Cioccio A, Galassi DMP (2014) The dark side of springs: what drives small-scale spatial patterns of subsurface meiofaunal assemblages? J Limnol 73(1):55–64. doi:10.4081/jlimnol.2014.848

    Google Scholar 

  • Fiorillo F (2009) Spring hydrographs as indicators of droughts in a karst environment. J Hydrol 373:290–301

    Article  Google Scholar 

  • Ford D, Williams P (1989) Karst geomorphology and hydrology. Chapman and Hall, London

    Book  Google Scholar 

  • Galassi DMP, De Laurentiis P (1997) Pseudectinosoma reductum sp. n., a new ectinosomatid harpacticoid from spring waters in Italy (Crustacea: Copepoda). Hydrobiologia 356:81–86

    Article  Google Scholar 

  • Galassi DMP, Dole-Olivier MJ, De Laurentiis P (1999) Phylogeny and biogeography of the genus Pseudectinosoma, and description of P. janineae sp. n. (Crustacea: Copepoda, Ectinosomatidae). Zool Scr 28:289–303

    Article  Google Scholar 

  • Galassi DMP, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Freshw Biol 54:691–708

    Article  Google Scholar 

  • Hoek E, Bray J (1981) Rock slope. Engineering Institute of Mining and Metallurgy, London

    Google Scholar 

  • Kiraly L (1969) Anisotropie et hétérogénéité de la perméabilité dans les calcaires fissurés (Anisotropy and heterogeneity of permeability in fractured limestones). Eclogae Geol Helv 62(2):613–619

    Google Scholar 

  • Krasny J, Sharp JM (2007) Groundwater in fractured rocks. IAH Sel Pap 9:55–68

    Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy; a first overall map. J Hydrol 270:75–88

    Article  Google Scholar 

  • Lorè A, Magaldi D, Tallini M (2002) Morphology and morphometry of the Gran Sasso (Central Italy) surface karst. Geogr Fis Din Quat 25:123–134

    Google Scholar 

  • Magaldi D, Lorè A, Peroni P (2004) Assessing relationship between surface karst features and some geostructural elements by GIS in the Gran Sasso range (Abruzzi, Italy). Geogr Fis Din Quat 27:121–130

    Google Scholar 

  • Manda AK, Mabee SB, Wise DU (2008) Influence of rock fabric on fracture attribute distribution and implications for groundwater flow in the Nashoba Terrane, eastern Massachusetts. J Struct Geol 30(4):464–477

    Article  Google Scholar 

  • Mayer B (2005) Assessing sources and transformations of sulphate and nitrate in the hydrosphere using isotope techniques. In: Aggarwal PK, Gat JR, Froehlich FO (eds) Isotopes in the water cycle: past present, future of a developing science. Springer, Dordrecht, pp 67–89

    Chapter  Google Scholar 

  • Monjoie A (1980) Prévision et contròle des caractéristiques hydrogéologiques dans les tunnels du Gran Sasso (Appenin, Italie) (Prediction and control of the hydrogeological characteristics of the Gran Sasso tunnel (Apennines, Italy)). In: Calembert L (ed) Livre jubilaire. Thone, Liège

    Google Scholar 

  • Neuman SP (2005) On the tensorial nature of advective porosity. Adv Water Resour 28(2):149–159

    Article  Google Scholar 

  • Neuman SP (2008) Multiscale relationships between fracture length, aperture, density and permeability. Geophys Res Lett 35(22):L22402

    Article  Google Scholar 

  • Petitta M (2009) Hydrogeology of the middle valley of the Velino River and of the S. Vittorino Plain (Rieti, Central Italy). Ital J Eng Geol Environ 1:157–181

    Google Scholar 

  • Petitta M, Tallini M (2002) Idrodinamica sotterranea del massiccio del Gran Sasso (Abruzzo): indagini idrologiche, idrogeologiche e idrochimiche (1994–2001) (Hydrogeology of Gran Sasso massif (Abruzzi): hydrological, hydrogeological and hydrochemical investigations (1994–2001)). Boll Soc Geol Ital 121:343–363

    Google Scholar 

  • Petitta M, Tallini M (2003) Groundwater resources and human impacts in a Quaternary intramontane basin (L’Aquila Plain, Central Italy). Water Int 28:57–69

    Article  Google Scholar 

  • Scesi L, Gattinoni P (2007) Roughness control on hydraulic conductivity in fractured rocks. Hydrogeol J 15(2):201–211

    Article  Google Scholar 

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37:904–919

    Article  Google Scholar 

  • Scozzafava M, Tallini M (2001) Net infiltration in the Gran Sasso Massif (Central Italy): Thornthwaite water budget using the CN method (soil conservation service). Hydrogeol J 9:461–475

    Article  Google Scholar 

  • Skrzypek G (2013) Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal Bioanal Chem 405:2815–2823

    Article  Google Scholar 

  • Stoch F, Galassi DMP (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653:217–234

    Article  Google Scholar 

  • Tallini M, Parisse B, Petitta M, Spizzico M (2013) Long-term spatio-temporal hydrochemical and 222Rn tracing to investigate groundwater flow and water–rock interaction in the Gran Sasso (Central Italy) carbonate aquifer. Hydrogeol J 21(7):1447–1467

    Article  Google Scholar 

  • Tallini M, Adinolfi Falcone R, Carucci V, Falgiani A, Parisse B, Petitta M (2014) Isotope hydrology and geochemical modeling: new insights into recharge process and water–rock interaction of fissured carbonate aquifer (Gran Sasso, Central Italy). Environ Earth Sci. doi: 10.1007/s12665-014-3364-9

  • Toth J (1963) Theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Toth J (1984) The role of regional gravity flow in the chemical and thermal evolution of groundwater. In: Hitchon B, Wallick EI (eds) Proceedings of the Canadian/American conference on hydrogeology: practical applications of ground water geochemistry. National Water Well Association Council, Worthington, pp 3–39

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Effective transmissivity of two-dimensional fracture networks. Int J Rock Mech Min Geomech Abstr 33(4):433–438

    Article  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Alessia Di Cioccio and Barbara Fiasca for having performed biological sampling and analyses in the Presciano spring system, and Maria Di Cairano, Santino Notarangelo and Daniele Gussati for field survey assistance. The Gran Sasso—Laga National Park (Italy) is acknowledged for having supported the multidisciplinary investigation. The authors thanks the anonymous reviewers for their useful comments. The research was partially granted by LIFE12 BIO/IT/000231-AQUALIFE—Development of an innovative and user-friendly indicator system for biodiversity in groundwater dependent ecosystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Petitta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petitta, M., Caschetto, M., Galassi, D.M.P. et al. Dual-flow in karst aquifers toward a steady discharge spring (Presciano, Central Italy): influences on a subsurface groundwater dependent ecosystem and on changes related to post-earthquake hydrodynamics. Environ Earth Sci 73, 2609–2625 (2015). https://doi.org/10.1007/s12665-014-3440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3440-1

Keywords

Navigation