Skip to main content

Advertisement

Log in

A contribution of CO2 released from mineral springs into overall volume of annual CO2 emissions in the Slovak Republic

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Complex geological and tectonic structure of the Western Carpathians within the Slovak territory has conditioned generation of abundant mineral springs (1782), with various levels of mineralization and chemical types. Many of them possess a high content of CO2 and therefore they may be considered as permanent point sources of CO2. They are a part of natural analogues. Due to this fact, an approximate estimation of overall annual volume of CO2 has been carried out. However, such seemingly simple calculation requests an introduction of necessary corrections, professional estimates and some limitations based on knowledge and practical experience from a long-term monitoring. The final result of this process of all considered sources provided volume of around 4 Mt of CO2 year−1. This amount represents annual CO2 emission of standard thermal power plant (ca 500 MW) and creates practically 10 % of the annual Slovak CO2 production. It means that the volume of CO2 produced from mineral springs is not a negligible item and may create remarkable share of aggregated emissions in countries of similar geological and hydrogeological structure. That is why, it should be included in the emission evaluation of the countries concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ACGIH (1971) Carbon dioxide In: Documentation of the threshold limit values for substances in workroom air, 3rd edn. Cincinnati, OH: American Conference of Governmental Industrial Hygienists. p 39

  • Allis R, Bergfeld D, Moore J, McClure K, Morgan C, Chidsey T, Heath J, McPerson B (2005) Implications of results from CO2 flux surveys over known CO2 systems for long-term monitoring. 4th annual conference on carbon capture and sequestration, DOE/NETL

  • Andrusov D, Bystrický J, Fusán O (1973) Outline of the structure of the West Carpathians. Guide-book for Geol. Excur. 10: Congr. CBGA. Geol Úst D Štúra: 1–44

  • Annex No. 1 and Annex No. 2 to the Decree No. 89/2000 Ministry of Health of SR

  • Baines S, Worden R (2000) Geological CO2 disposal: understanding the long term fate of CO2 in naturally occurring accumulations. In: The Fifth International Greenhouse Gas Control conference, Cairns, Australia. pp 13–16

  • Beaubien SE, Ciotoli G, Lombardi S (2003) Carbon dioxide and radon hazard in the Alban Hills area (central Italy). J Volcanol Geoth Res 123(1–2):63–80

    Article  Google Scholar 

  • Benson SM, Hepple R, Apps J, Tsang CF, Lippmann M (2002) Lessons learned from natural and industrial analogues for storage of carbon dioxide in deep geological formations. In: Lawrence Berkeley National Laboratory Report LBNL-51170

  • Bezák V, Biely A, Elečko M, Konečný V, Mello J, Polák M, Potfaj M (2011) A new synthesis of the geological structure of Slovakia—the general geological map at 1:200,000 scale. Geol Quart 55(1):1–8

    Google Scholar 

  • Biely A, Bezák V, Elečko M, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996) Geologická mapa Slovenska v M. 1: 500,000. ŠGÚDŠ, Slovak

    Google Scholar 

  • Bickle M, Kampman N (2013) Lessons in carbon storage from geological analogues. Geol Soc Am 41(4):525–526. doi:10.1130/focus0420132.1

    Google Scholar 

  • Burnside NM, Shipton ZK, Dockrill B, Ellam RM (2013) Man-made versus natural CO2 leakage: a 400 k.y. history of an analogue for engineering geological storage of CO2. Geology. Geol Soc Am 41(4):471–474. doi:10.1130/g33738.1

    Google Scholar 

  • Cannata A, Giudice G, Gurrieri S, Montalto P, Alparone S, DiGrazia G, Favara R, Gresta S, Liuzzo M (2010) Relationship between soil CO2 flux and volcanic tremor at Mt. Etna: implications for magma dynamics. Environ Earth Sci 61(3):477–489. doi:10.1007/s12665-009-0359-z published: Aug 2010

    Article  Google Scholar 

  • Cook A, Vourlitis GL, Harayono Y (2000) Evaluating the potential for long-term elevated CO2 exposures studies using CO2 springs in Japan. J Agric Meteorol 56(1):31–40 ISSN: 0021-8588

    Article  Google Scholar 

  • Cornides I, Kecskés Á (1982) Deep-seated carbon dioxide in Slovakia: the problem of its origin. Geol Carpath 33(2):183–190

    Google Scholar 

  • Cotel AJ (1999) A trigger mechanism for the Lake Nyos disaster. J Volcanol Geoth Res 88:343–347

    Article  Google Scholar 

  • Couwenberg J (2009) Methane Emissions From Peat Soils (Organic Soils, Histosols). In: Facts, MVR-ability, emission factors. Wetlands International, Ede, The Netherlands, p 14. http://www.imcg.net/media/download_gallery/cli

  • Craig H (1963) The isotopic geochemistry of water and carbon in geotherma areas. In: Tongiorgi E (ed) Nuclear geologz on geothermal areas; Pisa Consiglio Nazionale de le Ricerche; Laboratoria de geologia nucleare. pp 17–53

  • Decree No. 89/2000 Ministry of Health of the Slovak Republic about natural healing resources and resources of mineral table waters

  • Franko O (2000) Origin of CO2 H2S and SO4 in mineral and thermal waters of the Western Carpathians from the point of view of stable isotopes and the rock environment. Podzemná voda VI. 4(2) SAH:102–113

  • Franko O, Melioris L (2000) Minerálne a termálne vody Slovenska–vznik a rozšírenie. Podzemná voda VI., 1, SAH: 5–28

  • Frondini F (2008) Geochemistry of regional aquifer systems hosted by carbonate-evaporite formations in Umbria and southern Tuscany (central Italy). Appl Geochem 23(8):2091–2104

    Article  Google Scholar 

  • Gerlach T (2011) Volcanic versus anthropogenic carbon dioxide. EOS 92(24):201–208

    Article  Google Scholar 

  • Han X, Li Y, Du J, Zhou X, Xie C, Yhang W (2014) Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China. Nat Hazards Earth Syst Sci Discuss 2: 1729–1757. doi:10.5194/nhessd-2-1729-2014. http://www.nat-hazards-earth-syst-sci-discuss.net/2/1729/2014/

  • Holloway S, Pearce JM, Ohsumi T, Hards VL (2005) A review of natural CO2 occurrences and their relevance to CO2 storage. In:IEAGHG technical study:53

  • Holloway S, Pearce JM, Hards VL, Ohsumi T, Gale J (2007) Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy 32:1194–1201

    Article  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeoscience 7: 1505–1514. doi:10.5194/bg-7-1505-2010. http://www.biogeosciences.net/7/1505/2010/

  • Howarth RW et al (2011) Methane and greenhouse-gas footprint of natural gas from shale formations. Clim Change Lett 106(4):679–690. doi:10.1007/s;10584-011-0061-5

    Article  Google Scholar 

  • Hynie O (1963) Hydrogeologie ČSSR II Minerální vody. ČSA, Praha. p 797

  • IEA (2012) http://www.iea.org/publications/freepublications/publication/name, 31287,en.htm

  • IPCC (Intergovernmental panel on climate change) (2007) The physical science basis. In: Fourth assessment report, IPCC Secretariat. Geneva, Switzerland

  • Javoy M, Pineau F, Allegre CJ (1982) Carbon geodynamic cycle. Nature 300:171–173

    Article  Google Scholar 

  • Kerrick DM (2001) Present and past nonanthropogenic CO2 degassing from the solid earth. Rev Geophys 39:565–585

    Article  Google Scholar 

  • Kirk K (2011) Natural CO2 flux literature review for the QICS project. British Geological Survey. NERC 32. http://www.carbonindependent.org/sources_car.htm

  • Kissinger A, Helmig R, Ebigbo A, Class H, Lange T, Sauter M, Heitfeld M, Klunker J, Jahnke W (2013) Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70(8):3855–3873. doi:10.1007/s12665-013-2578-6

    Article  Google Scholar 

  • Krahulec P, Rebro A, Uhliarik J, Zeman J (1978) Minerálne vody Slovenska 2, Krenografia, Vyd. Osveta Martin 1040. ISBN 70-033-78

  • Kucharič Ľ, Bodiš D, Šesták P (2011) An elevation structure Lipany, Slovak Republic—the example of sustainable use of deep sub-surface. In: The 1st sustainable earth sciences conference and exhibition (SES 2011). Poster section and extended abstract. EAGE Valencia, Spain

  • Leavitt SW (1982) Annual volcanic carbon dioxide emission: an estimate from eruption chronologies. Environ Geol 4(1):15–21

    Article  Google Scholar 

  • Lewicki JL, Evans WC, Hilley GE, Sorey ML, Rogie JD, Brantley SL (2003) Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California. J Geophys Res 108(B4):2187. doi:10.1029/2002JB002141

    Article  Google Scholar 

  • Lewicki JL, Birkholzer JT, Tsang CF (2006) Natural and industrial analogues for release of CO2 from storage reservoirs: identification of features, events and processes and lessons learned. In: Lawrence Berkeley National Laboratory Report LBNL-59784

  • Lombardi S et al (2006) Advances in the geological storage of carbon dioxide. Springer, The Netherlands, pp 129–139

    Book  Google Scholar 

  • Lombardi S (2010) A resource for studying potential impacts, examining gas migration processes and testing monitoring techniques. In: IEAGHG workshop: natural releases of CO2: building knowledge for CO2 storage environmental impact assessments. Maria Laach, Germany

  • Lombardi S, Voltattorni N (2010) Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl Geochem 25:1206–1220

    Article  Google Scholar 

  • Maheľ M (1952) Minerálne pramene Slovenska so zreteľom na geologickú stavbu. Práce ŠGÚ 27:85

    Google Scholar 

  • Miglietta F, Raschi A, Bettarini I, Resti R, Selvi F (1993) Natural CO2 springs in Italy—a resource for examining long-term response of vegetation to rising CO2 concentrations. Plant Cell Environ 16:873–878

    Article  Google Scholar 

  • Minissale A (2006) The carbon cycle: implication on tectonics and climate changes. Periodico di Mineralogia 75(2–3):195–204

    Google Scholar 

  • NAPL (2006) National allocation plan for years 2008–2012. In: Ministry of Environment of the Slovak Republic (proposal). pp 29

  • NASCENT (2005) (IEA Greenhouse Gas, Cheltenham, United Kingdom) natural analogue for the geological storage of CO2, IEA Greenhouse Gas R&D Programme, Report Number 2005/6. http://www.ieaghg.org/index.php?/technical-reports-2005.html

  • Newell DL (2010) Isotope geochemistry of CO2—rich mineral springs—natural analogues for a leaking carbon sequestration scenario. In: Goldschmidt Conference abstract

  • Newton PCD, Bell CC, Clark H (1996) Carbon dioxide emissions from mineral springs in Northland and the potential of these sites for studying the effects of elevated carbon dioxide on pastures. N Z J Agric Res 39(1):33–40

    Article  Google Scholar 

  • Paces T (1972) Flux of CO2 from the lithosphere in the Bohemian Massif. Nat Phys Sci 240:141–142

  • Pearce JM, Holloway S, Rochelle CA, Bateman K, Wacker H, Nelis M, Studlick J, Shew R (1996) Natural occurrences as analogues for the geological disposal of carbon dioxide. Energy Convers Manag 37(6–8):1123–1128

    Article  Google Scholar 

  • Povinec P, Franko O, Šivo A, Richtáriková M, Breier R, Aggarwal PK, Araguás-Araguás L (2010) Spatial radiocarbon and stable isotope variability of mineral and thermal waters in Slovakia. In: Proceedings of the 20th International Radiocarbon Conference, RADIOCARBON, vol 52, Nr. 2–3. pp 1056–1067

  • Raschi A, Miglietta F, Tognetti R, van Gardingen PR (1997) Plant responses to elevated CO2: evidence from natural springs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roberts JJ, Wood RA, Haszeldine S (2011) Assessing the health risk of natural CO2 seeps in Italy. PNAS 108(40):16545–16548

    Article  Google Scholar 

  • Salmi T, Maata A, Antilla P, Ruoho-Airola T, Amneli T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sens slope estimates—the excel template application Makesens. In: Finnish Meteorological Institute, Helsinky. p 35

  • Schutze C, Sauer U, Beyer K, Lamert H, Brauer K, Strauch G, Flechsig C, Kampf H, Dietrich P (2012) Natural analogues: a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environ Earth Sci 67(2):411–423. doi:10.1007/s12665-012-1701-4

    Article  Google Scholar 

  • Stevens SH, Fox CE, Melzer LS (2000) McElmo dome and St. Johns natural CO2 fields: analogs for geologic sequestration. In: Fifth International Greenhouse Gas Control Conference, Cairns, 13–16 August

  • Tait RD, Santos IR, Maher DT, Cyronak TJ, Davis RJ (2013) Enrichment of radon and carbon dioxide in the open atmosphere of an Australian coal seams gas field. Environ Sci Technol 47:3099–3104. doi:10.1021/es304538g

    Article  Google Scholar 

  • Vodnik D, Kastelec D, Pfany H, Macek I, Turk B (2006) Small scale spatial variation in soil CO2 concentration in a natural carbon dioxide spring and some related plant responses. Sci Direct Geoderma 133:309–319

    Article  Google Scholar 

  • Voltattorni N, Sciarra A, Caramanna G, Cinti D, Pizzino L, Quattrocchi F (2009) Gas chemistry of natural analogues for the studies of geological CO2 sequestration. Appl Geochem 24(7):1339–1346

    Article  Google Scholar 

  • Wang JF, Wu QB (2013) Annual soil CO2 efflux in a wet meadow during active layer freeze-thaw changes on the Qinghai-Tibet Plateau. Environ Earth Sci 69(3):855–862. doi:10.1007/s12665-012-1970-y

    Article  Google Scholar 

  • Wang JF, Wang GX, Hu HC, Wu QB (2010) The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau. Environ Earth Sci 60(3):537–548. doi:10.1007/s12665-009-0193-3

    Article  Google Scholar 

  • Wu JH (2012) Response of peatland development and carbon cycling to climate change: a dynamic system modelling approach. Environ Earth Sci 65(1):141–151. doi:10.1007/s12665-011-1073-1

    Article  Google Scholar 

  • Wu XD, Zhao L, Wu TH, Chen J, Pang QQ, Du EJ, Fang HB, Wang ZW, Zhao YH, Ding YJ (2013) Observation of CO2 degassing in Tianshuihai Lake basin of the Qinghai-Tibetan Plateau. Environ Earth Sci 68(3):865–870. doi:10.1007/s12665-012-1790-0

    Article  Google Scholar 

  • Yamamoto K, Koide H, Tosha T, Ayoagi R, Naganishi S, Todaka N, Benson S, Ritquist J, Lewicki J (2006) Natural analogue study for geological sequestration of CO2 at the Matsushiro earthquake fault zone, Japan: CO2 seepage mechanism; Conference GHGT -8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L’udovít Kucharič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucharič, L., Bodiš, D., Panák, D. et al. A contribution of CO2 released from mineral springs into overall volume of annual CO2 emissions in the Slovak Republic. Environ Earth Sci 73, 231–238 (2015). https://doi.org/10.1007/s12665-014-3418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3418-z

Keywords

Navigation