Skip to main content
Log in

GIS application for regional assessment of seismically induced slope failures in the Sierra Nevada Range, South Spain, along the Padul Fault

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Complete rupture of the Padul Fault represents one of the largest plausible earthquakes in the Sierra Nevada Range, one of the most seismically active regions of Spain. We performed a regional assessment of earthquake-triggered slope instabilities in the western part of the range to determine the most likely types of failures from such an earthquake in the region and suggest where such failures have a higher likelihood of occurring. These results are broadly useful for management of regional life-lines and future development. First, a slope-instability inventory of the Sierra Nevada was produced to identify the most common instability types. Subsequently, the Newmark’s sliding rigid-block methodology, implemented in a geographic information system, was used to obtain the distribution of Newmark displacements in the area considering a M w 6.6 earthquake on the Padul Fault. The Newmark displacements were then compared to the distribution of the inventoried slope instabilities to identify the areas where seismicity could reactivate old slope instabilities or generate new ones, and to identify the involved landslide typology. The most likely seismically induced slope instabilities in the Sierra Nevada are rock falls and rock slides. These types of instabilities could be triggered by Newmark displacements of 2 cm or less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akkar S, Bommer JJ (2007) Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East. Bull Seismol Soc Am 97:511–530

    Article  Google Scholar 

  • Alfaro P, Galindo-Zaldívar J, Jabaloy A, López-Garrido AC, Sanz de Galdeano C (2001) Evidence for the activity and paleoseismicity of the Padul Fault (Betic Cordillera, southern Spain). Acta Geol Hispanica 36:283–295

    Google Scholar 

  • Alfaro P, Azañón JM, Clavero D, Delgado J, Figueras S, García-Mayordomo J, García-Tortosa FJ, Garrido J, Hernández L, Lenti L, López JA, López Casado C, Macau A, Martino S, Mulas J, Peláez JA, Rodríguez-Peces MJ, Santamarta JC, Silva PG (2012) Movimientos de ladera inducidos por terremotos en España: Una revisión. In: Proceedings of the 7ª Asamblea Hispano-Portuguesa de Geodesia y Geofísica. Donostia-San Sebastián, Spain, pp 163–168

  • Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 37:1–53

    Article  Google Scholar 

  • Benito B, Navarro M, Vidal F, Gaspar-Escribano JM, García-Rodríguez MJ, Martínez-Solares JM (2010) A new seismic hazard assessment in the region of Andalusia (Southern Spain). Bull Earthq Eng 8:739–766

    Article  Google Scholar 

  • Bindi D, Luzi L, Massa M, Pacor F (2010) Horizontal and vertical ground motion prediction equations derived from the Italian accelerometric archive (ITACA). Bull Earthq Eng 8:1209–1230

    Article  Google Scholar 

  • Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179

    Article  Google Scholar 

  • Buforn E, Udías A, Madariaga R (1991) Intermediate and deep earthquakes in Spain. Pure Appl Geophys 136:375–393

    Article  Google Scholar 

  • Buforn E, Bezzeghoud M, Udías A, Pro C (2004) Seismic sources on the Iberia–African plate boundary and their tectonic implications. Pure Appl Geophys 161:623–646

    Article  Google Scholar 

  • Carro M, De Amicis M, Luzi L, Marzorati S (2003) The application of predictive modelling techniques to landslides induced by earthquakes: the case study of the 26 September 1997 Umbria-Marche earthquake (Italy). Eng Geol 69:139–159

    Article  Google Scholar 

  • Comité Européen de Normalisation (CEN) (2003) Eurocode 8: design of structures for earthquake resistance. Part 5: foundations, retaining structures and geotechnical aspects. prEN 1998-5:2003 E, Brussels

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Special Report 247. Transportation Research Board, National Research Council, Washington, pp 36–75

  • Delgado J, Peláez JA, Tomás R, Estévez A, López Casado C, Doménech C, Cuenca A (2006) Evaluación de la susceptibilidad de las laderas a sufrir inestabilidades inducidas por terremotos. Aplicación a la cuenca de drenaje del río Serpis (provincia de Alicante). Rev Soc Geo España 19:197–218

    Google Scholar 

  • Delgado J, Peláez JA, Tomás R, García-Tortosa FJ, Alfaro P, López Casado C (2011) Seismically-induced landslides in the Betic Cordillera (S Spain). Soil Dyn Earthq Eng 31:1203–1211

    Article  Google Scholar 

  • IGME, Diputación de Granada (2007) Atlas de Riesgos Naturales en la provincia de Granada. Granada, Spain

  • Dreyfus D, Rathje EM, Jibson RW (2013) The influence of different simplified sliding-block models and input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake. Eng Geol 163:41–54

    Article  Google Scholar 

  • García-Mayordomo J (1999) Zonificación Sísmica de la Cuenca de Alcoy Mediante un Sistema de Información Geográfico. In: Proceedings 1st national congress of earthquake engineering, Murcia, Spain, pp 443–450

  • García-Mayordomo J, Rodríguez-Peces MJ, Azañón JM, Insua Arévalo JM (2009) Advances and trends on earthquake-triggered landslide research in Spain. In: 1st International workshop on earthquake archaeology and palaeoseismology. Baelo Claudia, Cádiz, Spain

  • García-Mayordomo J, Insua-Arévalo JM, Martínez-Díaz JJ, Jiménez-Díaz A, Martín-Banda R, Martín-Alfageme S, Álvarez-Gómez JA, Rodríguez-Peces MJ, Pérez-López R, Rodríguez-Pascua MA, Masana E, Perea H, Martín-González F, Giner-Robles J, Nemser ES, Cabral J, the QAFI Compilers Working Group (2012) The Quaternary active faults database of Iberia (QAFI v.2.0). J Iber Geol 38:285–302

    Article  Google Scholar 

  • Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218

    Article  Google Scholar 

  • Jibson RW (2011) Methods for assessing the stability of slopes during earthquakes––a retrospective. Eng Geol 122:43–50

    Article  Google Scholar 

  • Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–289

    Article  Google Scholar 

  • Jiménez Pintor J, Azor A (2006) El Deslizamiento de Güevéjar (provincia de Granada): un caso de inestabilidad de laderas inducida por sismos. Geogaceta 40:287–290

    Google Scholar 

  • Jiménez-Sánchez J, Martín-Rosales W, Fernández-Chacón F, Rubio-Campos JC (2008) Variabilidad temporal de las precipitaciones en la cuenca del río Guadalfeo (provincia de Granada). In: López-Geta JA et al (eds) Agua y Cultura. Instituto Geológico y Minero de España, Spain, pp 159–168

    Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421

    Article  Google Scholar 

  • Keefer DK (2002) Investigating landslides caused by earthquakes––a historical review. Surv Geophys 23:473–510

    Article  Google Scholar 

  • Li X, Zhou Z, Yu H, Wen R, Lu D, Huang M, Zhou Y, Cu J (2008) Strong motion observations and recordings from the great Wenchuan earthquake. Earthq Eng Eng Vib 7:235–246

    Article  Google Scholar 

  • López Casado C, Peláez Montilla JA, Henares Romero J (2001) Sismicidad en la Cuenca de Granada. In: Sanz de Galdeano C, Peláez Montilla JA, López Garrido AC (eds) La Cuenca de Granada. Estructura, Tectónica activa, Sismicidad, Geomorfología y dataciones existentes. CSIC-Universidad de Granada, Spain, pp 148–157

  • Luzi L, Pergalani F (2000) A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy). Soil Dyn Earthq Eng 20:301–313

    Article  Google Scholar 

  • Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58:313–336

    Article  Google Scholar 

  • Martínez-Martínez JM, Soto JI, Balanyá JC (2002) Orthogonal folding of extensional detachments: structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics 21:1–20

    Article  Google Scholar 

  • Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275:221–232

    Article  Google Scholar 

  • Mulas J, Ponce de León D, Reoyo E (2003) Microzonación sísmica de movimientos de ladera en una zona del Pirineo Central. In: Proceedings 2nd national congress of earthquake engineering, pp 13–26

  • NCSE-02 (Norma de Construcción Sismorresistente Española) (2002) Code of earthquake-resistant building: general part and construction. B.O.E. 11 October 2002, pp 35898–35967

  • Newmark NM (1965) Effects of earthquakes on dams and embankments. Géotechnique 15:139–160

    Article  Google Scholar 

  • Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (2000) Rainfall variability in Southern Spain on decadal to centennial time scales. Int J Climatol 20:721–732

    Article  Google Scholar 

  • Rodríguez-Peces MJ (2010) Analysis of earthquake-triggered landslides in the South of Iberia: testing the use of the Newmark’s method at different scales. PhD Thesis, University of Granada, Spain

  • Rodríguez-Peces MJ, García Mayordomo J, Azañón-Hernández JM, Jabaloy Sánchez A (2008) Evaluación regional de inestabilidades de ladera por efecto sísmico en la Cuenca de Lorca (Murcia): implementación del método de Newmark en un SIG. Boletín Geológico y Minero 119:459–472

    Google Scholar 

  • Rodríguez-Peces MJ, García Mayordomo J, Azañón JM (2009) Comparación del método de Newmark a escala regional, local y de emplazamiento: el caso del desprendimiento de la Paca (Murcia, SE España). Geogaceta 46:151–154

    Google Scholar 

  • Rodríguez-Peces MJ, García Mayordomo J, Azañón JM, Insua-Arévalo JM, Jiménez-Pintor J (2011a) Constraining pre-instrumental earthquake parameters from slope stability back-analysis: paleoseismic reconstruction of the Güevéjar landslide during the 1st November 1755 Lisbon and 25th December 1884 Arenas del Rey earthquakes. Quat Int 242:76–89

    Article  Google Scholar 

  • Rodríguez-Peces MJ, García-Mayordomo J, Azañón JM, Jabaloy A (2011b) Regional hazard assessment of earthquake-triggered slope instabilities considering site effects and seismic scenarios in Lorca Basin (Spain). Environ Eng Geosci 17:183–196

    Article  Google Scholar 

  • Rodríguez-Peces MJ, Pérez-García JL, García-Mayordomo J, Azañón JM, Insua-Arévalo JM, Delgado-García J (2011c) Applicability of Newmark method at regional, sub-regional and site scales: seismically induced Bullas and La Paca rock-slide cases (Murcia, SE Spain). Nat Hazards 59:1109–1124

    Article  Google Scholar 

  • Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58:337–351

    Article  Google Scholar 

  • Sanz de Galdeano C, Peláez Montilla JA (2010) Padul Fault: (ES666). In: García-Mayordomo et al (eds) Quaternary active faults database of Iberia v.2.0, December 2011, IGME, Madrid

  • Sanz de Galdeano C, Peláez Montilla JA, López Casado C (2003) Seismic potential of the main active faults in the Granada Basin (Southern Spain). Pure Appl Geophys 160:1537–1556

    Article  Google Scholar 

  • Skarlatoudis AA, Papazachos BN, Margaris N, Theodulidis C, Papaioannou I, Kalogeras EM, Scordilis EM, Karakostas V (2003) Empirical peak ground-motion predictive relations for shallow earthquakes in Greece. Bull Seismol Soc Am 93:2591–2603

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Krizek RJ, Schuster RL (eds) Landslides: analysis and control. Special Report, 176. Transportation Research Board, National Research Council, Washington, pp 11–33

  • Wasowski J, Del Gaudio V, Pierri P, Capolongo D (2002) Factors controlling seismic susceptibility of the Sele valley: the case of the 1980 Irpinia earthquake re-examined. Surv Geophys 23:563–593

    Article  Google Scholar 

  • Wilson RC, Keefer DK (1983) Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bull Seismol Soc Am 73:863–877

    Google Scholar 

  • Xu Q, Fan X, Huang R, Van Westen C (2009) Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bull Eng Geol Environ 68:373–386

    Article  Google Scholar 

  • Yin Y, Wang F, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6:139–152

    Article  Google Scholar 

  • Youd TL (1978) Major cause of earthquake failure is ground failure. Civil Eng ASCE 48:47–51

    Google Scholar 

Download references

Acknowledgments

This study was supported by research projects CGL2008-03249/BTE, TOPOIBERIA CONSOLIDER-INGENIO2010 CSD2006-00041 and FASE-GEO CGL2009-09726 from the Spanish Ministry of Science and Innovation and MMA083/2007 from the Spanish Ministry of Environment. Nicola Woollard is thanked for revising the English. The authors are very grateful to Hans-Balder Havenith and two anonymous reviewers whose comments helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rodríguez-Peces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Peces, M.J., García-Mayordomo, J., Azañón, J.M. et al. GIS application for regional assessment of seismically induced slope failures in the Sierra Nevada Range, South Spain, along the Padul Fault. Environ Earth Sci 72, 2423–2435 (2014). https://doi.org/10.1007/s12665-014-3151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3151-7

Keywords

Navigation