Skip to main content
Log in

Study on Comparison of Indian Ozonesonde Data with Satellite Data

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

This paper assesses the quality of ozone data of modified Brewer Mast (MBM) balloonborne ozonesonde and its comparison with MOZAIC Data (version 4), TES data (version 6), UARS MLS (version 5), EOS Aura MLS Data (version 5) and SBUV (version 8.1). The stations that have been used for this analysis: Delhi (28.58N, 77.20E) (Ozonesonde, MOZAIC, TES, UARS MLS, AURA MLS and SBUV), Pune (18.53N, 73.85E) Ozonesonde, UARS MLS, AURA MLS, SBUV and MOZAIC over Bombay presently called Mumbai (20.19N, 72.34E)), Madras presently called Chennai (13N, 80.18E) (MOZAIC and MLS) and Trivandrum (8.48N, 76.95E) (Ozonesonde, UARS MLS, AURA MLS and SBUV). Analysis shows that reasonable amounts of ozonesonde data are of good quality according to WMO criteria (1982) as 70–80 % of data over all the three stations are within the normalization factor of 1.3–0.8 ± (0.05–0.1) although some major changes in instrumentation e.g., new fast running nonreactive Teflon pump, modernized electronics, and smaller case since 1971. Several international intercomparisons carried out in 1970, 1982, 1991 and 1996 respectively, has also been confirmed the same, in spite of fundamental differences among the methods of these intercomparisons as well as ozonesonde types on procedure for sonde preparation, data processing and analysis. The intercomparison of Indian ozonesonde data (1995–1999) is made at troposphere with MOZAIC data (1995–2000) over Delhi and Pune/Mumbai, ozonesonde data (2013–2014) also compare with TES (2013–2014) special observation data over particular station Delhi at troposphere and at stratosphere with UARS MLS (1995–1999), EOS Aura MLS (2005–2014) and SBUV (2005–2013) data at Delhi, Pune and Trivandrum. Tropospheric value of Ozonesonde shows on average 10–20 % higher value than MOZAIC value over Delhi and Pune except in the lower height (<800 hPa) but ozonesonde show 10–15 % higher value than TES over Delhi in the lower height (<800 hPa). The percentage difference between ozonesonde data and UARS MLS data at Delhi, Pune and Trivandrum show variation of ±15 % and ozonesonde data, EOS Aura MLS and SBUV data at Delhi, Pune and Trivandrum show variation of ±45 % in the vertical range of 46 to 10 hPa, where, MLS data show highest accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. McPeters, R.D., T. Miles, L.E. Flynn, C.G. Wellemeyer, and J.M. Zawodny, Comparison of SBUV and SAGE II ozone profiles, Implications for ozone trends, J. Geophys. Res. 99 (1994) 20513–20524.

  2. Logan, J.A., Tropospheric ozone: seasonal behavior, trends and anthropogenic influence, J. Geophys. Res. 90 (1985) 10463–10482.

  3. SPARC/WMO, Assessment of trends in the vertical distribution of ozone, in SPARC Report 1, edited by N. Harris, R. Hudson, and C. Phillips, WMO Ozone Res. Monit. Pro. Rep. 43, 289pp, SPARC Off, Verrieres-le-Bussion, France (1998).

  4. Attmannspacher, W. and H. Dutch, International ozone sonde intercomparison at the observatory of Hohenpiessenberg, Berichte des Deutschen Wetterdienstes, 120 (1970).

  5. Attmannspacher, W. and H. Dutch, 2nd International ozone sonde intercomparison at the observatory of Hohenpeissenberg, Berichte des Deutschen Wetterdienstes, 157 (1981).

  6. Acharya et al., Indo-USSR ozonesonde intercomparison experiment at Thumba-Part-I, ISRO-IMAPSR-24-85, June, 1985.

  7. Acharya et al., Indo-USSR ozonesonde intercomparison experiment at Thumba-Part-II, ISRO-IMAPSR-24-85, June, 1985.

  8. World Meteorological Association (WMO), Third WMO Intercomparison of the ozonesondes used in the Global ozone Observing System (Vanscoy, Canada, 13–24 May 1991) Global Atmospheric Watch, Rep. 27, WMO TD 528, Geneva (1991).

  9. Smit, H.G.J., and D. Kley, Jülich ozone sonde intercomparison experiment (JOSIE), WMO global atmosphere watch report series, No. 130 (Technical Document No. 926), World Meteorological Organization, Geneva (1998).

  10. Livesey, N.J., W.G. Read, L. Frodevaus, J.W. Waters, H.C. Pumphrey, D.L. Wu, M.L. Santee, S. Shippony, R.F. Jarnot, The UARS microwave limb sounder version 5 dataset: theory, characterization, and validation., J. Geophys. Res. 108(D13) (2003) 4378. doi:10.1029/2002JD002273.

  11. Cunnold, D.M., M.J. Newchurch, L.E. Floyd, H.J. Wang, J.M. Russell, R.M. McPeters, J. Zawdony, and L. Frodevaux, Uncertainties in upper stratospheric ozone trends from 1979 to 1996, J. Geophysical Res. 105 (2000) 4427–4444.

  12. Sreedharan, C.R., An Indian electrochemical ozonesonde, J. Phys. E. Sci. Instrum. Sr. 2 (1968) 995–997.

  13. Brewer, A.W., and J.R. Milford, The Oxford-Kew ozone sonde, Proc. R. Soc. A256 (1960) 470–495.

  14. Dutsch H.U., W. Zulig, and C.C. Ling, Regular ozone observation at Thalwill, Switzerland and at Boulder, Colorado, Rep. IAPETH 1, Lab, Atmospharenphys. Eidgen Eidgenoss, Tech Hochsch, Zurish (1970).

  15. Komhyr, W.D., Electrochemical concentration cells for gas analyser, Ann. Geophys. 25 (1969) 203–210.

  16. Barnes R.A., A.R. Bany, and A.L. Torres, Electrochemical concentration cell ozonesonde accuracy and precision, J. Geophys., Res. 90 (1985) 7881–7888.

  17. Hilsenrath et al, Results from Balloon ozone Intercomparison Campaign (BOIC), J. Geophysic., Res. 91 (1986) 13,137–13,152.

  18. Beckman, M., G. Ancellet, D. Martin, C. Abonnel, G. Daverneuil, F. Eidleliman, P. Bessermoulin, N. Fritz, and E. Gizard, Intercomparison of tropospheric profiles obtained by electrochemical sondes, a ground based lidar, and an airborne UV-Photometer, Atmos. Environ. 29 (1995) 1027–1042.

  19. Komhyr, W.D., R.A. Barnes, G.B. Brothers, J.A. Lathrop, and D.P. Opperman, Elcetrochemical concentration cell ozonesonde performance evaluation during STOIC 1989, J. Geophys., Res. 100 (1995) 9231–9244.

  20. Reid S.J., and G. Vaughan, A.R. March, and H.G.J. Smit, Intercomaprison of ozone measurements by ECC sondes and BENDIX chemiluminescent analyser, J. Atmos. Che. 25 (1996) 215–226.

  21. Beckman, M., G. Ancellet, G. Megie, H. Smit, H.G.J. Smit, Intercomparison campaign of vertical ozone profiles including electrochemical sondes of ECC and Brewer-Mast type and a ground based UV-differential absorption lidar, J. Atmos. Chem. 19 (1994) 259 – 288.

  22. Schoeberl, M.R. et al., Overview of the EOS Aura Mission, IEEE Trans. Geosci. Remote Sens. 44 (2006) 1066–1074.

  23. Waters, J.W. et al., The earth observing system microwave limb sounder (EOS MLS) on the Aura Satellite, IEEE T. Geosci. Remote. 44 (2006) 1075–1092.

  24. Jiang, Y.B. et al., Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements, J. Geophys. Res. 112 (2007) D24S34. doi:10.1029/2007JD008776.

  25. Froidevaux, L. et al., Validation of Aura Microwave Limb Sounder stratospheric ozone measurements, J. Geophys. Res. 113 (2008) D15S20. doi:10.1029/2007JD008771.

  26. Livesey, N.J. et al., Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere, J. Geophys. Res. 113 (2008) D15S02. doi:10.1029/2007JD008805.

  27. Bhartia, P.K., R.D. McPeters, L.E. Flynn, S. Taylor, N.A. Kramarova, S. Frith, B. Fisher, and M. DeLand, Solar Backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech. 6 (2013) 2533–2548.

  28. McPeters, R.D., P.K. Bhartia, D. Haffner, G. Labow, and L. Flynn, The version 8.6 SBUV ozone data record: an overview, J. Geophys. Res. 118 (2013) 8032–8039. doi:10.1002/jgrd.50597.

  29. DeLand, M.T., S.L. Taylor, L.K. Huang, and B.L. Fisher, Calibration of the SBUV version 8.6 ozone data product, Atmos. Meas. Tech. 5 (2012) 2951–2967. doi:10.5194/amt-5-2951-2012.

  30. McPeters, R.D. and G.J. Labow, Climatology 2011: an MLS and sonde derived ozone climatology for satellite retrieval algorithms, J. Geophys. Res.-Atmos. 117 (2012) D10303. doi:10.1029/2011jd017006.

  31. Beer, R., T.A. Glavich, and D.M. Rider, Tropospheric Emission Spectrometer for the Earth Observing System’s Aura satellite, Appl. Opt. 40 (2001) 2356–2367.

  32. Beer, R., TES on the Aura mission: scientific objectives, measurements, and analysis overview, IEEE Trans. Geosci. Remote Sens. 44(5) (2006) 1102–1105.

  33. Marenco, A., Valérie Thouret, Philippe Nédélec, Herman Smit, Manfred Helten, Dieter Kley, Fernand Karcher, Pascal Simon, Kathy Law, John Pyle, Georg Poschmann, Rainer Von Wrede, Chris Hume, and Tim Cook, Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, An overview, J. Geophys. Res. 103 (1998) 25,631–25,642.

  34. Thouret, V., A. Marenco, J.A. Logan, P. Nedelec, C. Grouhel, Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations, 103 (1998) 25695–25720.

  35. Waters, J.W, L. Froidevaux, G.L., Manney W.G., Read and L.S. Elson, Lower stratospheric CLO and O3 in the 1992 southern hemisphere winter, Geophys. Res. Lett. 20 (1993) 1219–1222.

  36. Barath et al, The upper atmospheric research satellite microwave limb sounder instrument, J. Geophysic. Res. 98 (1993) 10751019762.

  37. Friodevaus L., et al, Validation of UARS microwave limb sounder ozone measurements, J.Geophys. Res. 101 (1996) 10,017–10,060.

  38. Cunnold, D.M., H. Wang, W.P. Chu, and L. Froidevaux, Comparisons between Stratospheric Aerosol and Gas Experiment II and Microwave Limb Sounder ozone measurements and aliasing of SAGE II ozone trends in the lower stratosphere, J. Geophys. Res. 101 (1996) 10,061-10,076.

  39. Livesey, N.J., W.V. Snyder, W.G. Read, and P.A. Wagner, Retrieval algorithms for the EOS Microwave Limb Sounder (MLS), IEEE T. Geosci. Remote 44 (2006) 1144–1155. doi:10.1109/TGRS.2006.872327.

  40. Froidevaux, L., J. Anderson, H.J. Wang, R.A. Fuller, M.J. Schwartz, M.L. Santee, N.J. Livesey, H.C. Pumphrey, P.F. Bernath, J.M. Russell III, and M.P. McCormick, Global OZone Chemistry And Related trace gas Data records for the Stratosphere GOZCARDS: methodology and sample results with a focus on HCl, H2O, and O3, Atmos. Chem. Phys. 15 (2015) 10471-10507.

  41. WMO, World Meteorological Organization, Sources of errors in detection of ozone trends, World Meteorological Organization, Global Ozone Research and Monitoring project, report 12, 48, Geneva (1982).

  42. Draxler, R.R. 2003, Evaluation of an ensemble dispersion calculation, Journal of Applied Meteorology, Vol. 42, February, 308–317.

  43. Prasad, M. V. S. N., C. Sharma, B. C. Arya, T. K. Mandal, Sachchidananda Singh, Monika J. Kulshrestha, Rajesh Agnihotri, S. K. Mishra, Experimental facilities to monitor various types of atmospheric parameters in the radio and atmospheric sciences division (RASD) of CSIR-National Physical Laboratory, MAPAN-J. Metrol. Soc. India, Volume 28, Issue 3, pp 193–203, September 2013.

  44. Sharma, S.K., T. K. Mandal, Rohtash, M. Kumar, N. C. Gupta, H. Pathak, R. C. Harit and M. Saxena, Measurement of Ambient Ammonia over the National Capital Region of Delhi, India, MAPAN-J. Metrol. Soc India, (September 2014) 29(3), 165–173.

  45. Sen et al, Atmospheric Fine and Coarse Mode Aerosols at Different Environments of India and the Bay of Bengal During Winter-2014: Implications of a Coordinated Campaign, MAPAN-J. Metrol. Soc India, Volume 29, Issue 4, pp 273–284, December 2014.

  46. Shende, R.R, K. Jayaraman, C.R. Sreedharan and V.S. Tiwari, Broad features of surface ozone variations over Indian Region. Paper presented at Quadrennial ozone Symposium Intl, Ozone Comm., Charlottesville, VA (1992).

  47. Naja M. and Lal S., Surface ozone and precursor gases at Gadanki (13.5N, 79.2E), tropical rural site in India, J. Geophys. Res. (D14) (2002). doi:10.1029/2001JD000357.

  48. Nair, P.R., D. Chand, S. Lal, K.S. Modh, M. Naja, K. Parameswaran, S. Ravindran and S. Venkataramani, Temporal variations in surface ozone at Thumba (8.6N, 77E) –a tropical coastal site in India, Atmospheric Environment, 36 (2002) 603–610.

  49. Jain, S.L., Pavan S. Kulkarni, Sachin D. Ghude, Suraj D. Polade, B.C. Arya, P.K. Dubey and Shahnawaz, Trend analysis of total column ozone over New Delhi, India, Mapan-J. Metrol. Soc India, 23(2) (2008) 63–69.

  50. Kundu, N. Reference Ozonosphere over India, Scientific Report, ISRO-IMAP-SR-09-82, pp 20, December, 1982.

Download references

Acknowledgments

Authors acknowledge the Director, National Physical Laboratory and Director General, India Meteorological Department for providing the infrastructure during this analysis. Authors are thankful to ISRO/DOS for funding under CAWSES-India Program. Authors acknowledged the entire MLS & TES team for providing EOS Aura & UARS data. Authors are indebted to the SBUV/2 NOAA-16 & NOAA-18 Team members for providing the SBUV/2 data. Authors are also thankful to the MOZAIC Team members for providing the MOZAIC data for the above study. Rohtash (SRF) is thankful to Department of Space (ISRO/DOS) for funding his fellowship under CAWSES-India program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohtash, Mandal, T.K., Peshin, S.K. et al. Study on Comparison of Indian Ozonesonde Data with Satellite Data. MAPAN 31, 197–217 (2016). https://doi.org/10.1007/s12647-016-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-016-0174-4

Keywords

Navigation