Skip to main content
Log in

Metformin Prevented Dopaminergic Neurotoxicity Induced by 3,4-Methylenedioxymethamphetamine Administration

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Metformin, a well-known antidiabetic drug, has recently been proposed to promote neurogenesis and to have a neuroprotective effect on the neurodegenerative processes induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in models of Parkinson’s disease. Interestingly, metformin has antioxidant properties and is involved in regulating the production of cytokines released during the neuroinflammatory process. Several studies have reported that 3,4-methylenedioxymethamphetamine (MDMA), a recreational drug mostly consumed by young adults, produces a persistent loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and caudate putamen (CPu) of mice. The aim of this study was to investigate the potential neuroprotective effect of metformin against short- and long-term neurotoxicity induced by MDMA and its role on MDMA-induced hyperthermia. Adult mice received metformin (2 × 200 mg/kg, 11-h intervals, administered orally), MDMA (4 × 20 mg/kg, 2-h interval, administered intraperitoneally), or MDMA plus metformin (2 × 200 mg/kg, 1 h before the first MDMA administration and 4 h after the last). On the second and third day, mice were treated with vehicle or metformin (1 × 200 mg/kg) and sacrificed 48 h and 7 days after the last MDMA administration. The neuroprotective effect of metformin on MDMA-induced dopaminergic damage was evaluated by dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunohistochemistry in SNc and CPu. Metformin prevented the MDMA-induced loss of TH-positive neurons in the SNc and TH- and DAT-positive fibers in CPu, both at 48 h and 7 days after the last MDMA administration. These results show that metformin is neuroprotective against the short- and long-lasting dopaminergic neurodegeneration induced by MDMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeyemi OO, Ishola IO, Adedeji HA (2013) Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: potential in the treatment of Parkinson’s disease? Prog Neuropsychopharmacol Biol Psychiatry S0278–5846(13):00235-2

    Google Scholar 

  • Amato S, Man HY (2011) Bioenergy sensing in the brain: the role of AMP-activated protein kinase in neuronal metabolism, development and neurological diseases. Cell Cycle 10(20):3452–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcia C, Fernandez Barreiro A, Poza M, Herrero MT (2003) Parkinson’s disease and inflammatory changes. Neurotox Res 5:411–418

    Article  PubMed  Google Scholar 

  • Baylen CA, Rosenberg H (2006) A review of the acute subjective effects of MDMA/ecstasy. Addiction 101(7):933–947

    Article  PubMed  Google Scholar 

  • Brust JC (2010) Substance abuse and movement disorders. Mov Disord 25:2010–2020. doi:10.1002/mds.22599

    Article  PubMed  Google Scholar 

  • Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11(3–4):183–202

    Article  CAS  PubMed  Google Scholar 

  • Callaghan RC, Cunningham JK, Sykes J, Kish SJ (2012) Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 120:35–40

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39(3):210–271

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Chowdhury S, Bhattacharyya M (2011) Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract 96:53–62

    Google Scholar 

  • Choi JS, Park C, Jeong JW (2010) AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 391(1):147–151

    Article  CAS  PubMed  Google Scholar 

  • Christine CW, Garwood ER, Schrock LE, Austin DE, McCulloch CE (2010) Parkinsonism in patients with a history of amphetamine exposure. Mov Disord 25:228–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Colado M, Williams J, Green A (1995) The hyperthermic and neurotoxic effects of “ecstasy” (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the dark agouti (DA) rat, a model of the cyp2d6 poor metabolizer phenotype. Br J Pharmacol 115:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colado MI, Granados R, O’Shea E, Esteban B, Green AR (1998) Role of hyperthermia in the protective action of chlomethiazole against MDMA (“ecstasy”)-induced neurodegeneration, comparison with the novel NMDA channel blocker AR-R15896AR. Br J Pharmacol 124:479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345

    CAS  PubMed  Google Scholar 

  • Costa G, Frau L, Wardas J, Pinna A, Plumitallo A, Morelli M (2013) MPTP-induced dopamine neuron degeneration and glia activation is potentiated in MDMA-pretreated mice. Mov Disord 28:1957–1965

    Article  CAS  PubMed  Google Scholar 

  • Curtin K, Fleckenstein AE, Robison RJ, Crookston MJ, Smith KR, Hanson GR (2015) Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: a population-based assessment. Drug Alcohol Depend 146:30–38

    Article  CAS  PubMed  Google Scholar 

  • Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75(5):321–341

    Article  CAS  PubMed  Google Scholar 

  • Fasano C, Poirier A, DesGroseillers L, Trudeau LE (2008) Chronic activation of the D2 dopamine autoreceptor inhibits synaptogenesis in mesencephalic dopaminergic neurons in vitro. Eur J Neurosci 28:1480–1490

    Article  CAS  PubMed  Google Scholar 

  • Frau L, Borsini F, Wardas J, Khairnar AS, Schintu N, Morelli M (2011) Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson’s disease. Synapse 65:181–188

    Article  CAS  PubMed  Google Scholar 

  • Frau L, Simola N, Plumitallo A, Morelli M (2013) Microglial and astroglial activation by 3,4-methylenedioxymethamphetamine (MDMA) in mice depends on S(+) enantiomer and is associated with an increase in body temperature and motility. J Neurochem 124(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Goffin D, Ali AB, Rampersaud N, Harkavyi A, Fuchs C, Whitton PS, Nairn AC, Jovanovic JN (2010) Dopamine-dependent tuning of striatal inhibitory synaptogenesis. J Neurosci 30:2935–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Górska AM, Noworyta-Sokołowska K, Gołembiowska K (2014) The effect of caffeine on MDMA-induced hydroxyl radical production in the mouse striatum. Pharmacol Rep 66:718–721

    Article  PubMed  Google Scholar 

  • Gouzoulis-Mayfrank E, Daumann J (2006) The confounding problem of polydrug use in recreational ecstasy/MDMA users: a brief overview. J Psychopharmacol 20(2):188–193

    Article  CAS  PubMed  Google Scholar 

  • Granado N, O’Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107(4):1102–1112

    CAS  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Green AR, O’shea E, Colado MI (2004) A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol 500:3–13

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Ali SF, Achat CN, Anderson KL (2003) Relevance of MDMA (“ecstasy”)-induced neurotoxicity to long-lasting psychomotor stimulation in mice. Psychopharmacology 166:241–248

    CAS  PubMed  Google Scholar 

  • Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. Neuroscience 158:1122–1132

    Article  CAS  PubMed  Google Scholar 

  • Khairnar A, Plumitallo A, Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox Res 17(4):435–439

    Article  CAS  PubMed  Google Scholar 

  • Kindlundh-Högberg AM, Schiöth HB, Svenningsson P (2007) Repeated intermittent MDMA binges reduce DAT density in mice and SERT density in rats in reward regions of the adolescent brain. Neurotoxicology 28:1158–1169

    Article  PubMed  Google Scholar 

  • Labuzek K, Liber S, Gabryel B, Okopien B (2010) Metformin has adenosine-monophosphate activated protein kinase (AMPK)-independent effects on LPS-stimulated rat primary microglial cultures. Pharmacol Rep 62:827–848

    Article  CAS  PubMed  Google Scholar 

  • Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103

    Article  CAS  PubMed  Google Scholar 

  • Mechan AO, O’Shea E, Elliott JM, Colado MI, Green AR (2001) A neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) to rats results in a long-term defect in thermoregulation. Psychopharmacology 155(4):413–418

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 21(10):1595–1606

    Article  PubMed  Google Scholar 

  • Miller DB, O’Callaghan JP (1995) The role of temperature, stress, and other factors in the neurotoxicity of the substituted amphetamines 3,4-methylenedioxymethamphetamine and fenfluramine. Mol Neurobiol 11:177–192

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M (2015) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol doi:10.1016/j.pneurobio.2015.09.011

    PubMed  Google Scholar 

  • Ng CH, Guan MS, Koh C, Ouyang X, Yu F, Tan EK, O’Neill SP, Zhang X, Chung J, Lim KL (2012) AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci 32(41):14311–14317

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270(2):741–751

    PubMed  Google Scholar 

  • Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 26(277):747–754

    Article  Google Scholar 

  • Paxinos G, Franklin KBJ (eds) (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 18:S207–S209

    Article  PubMed  Google Scholar 

  • Piech-Dumas KM, Tank AW (1999) CREB mediates the cAMPresponsiveness of the tyrosine hydroxylase gene: use of an antisense RNA strategy to produce CREB-deficient PC12 cell lines. Brain Res Mol Brain Res 70:219–230

    Article  CAS  PubMed  Google Scholar 

  • Portela LV, Gnoatto J, Brochier AW, Haas CB, de Assis AM, de Carvalho AK, Hansel G, Zimmer ER, Oses JP, Muller AP (2015) Intracerebroventricular metformin decreases body weight but has pro-oxidant effects and decreases survival. Neurochem Res 40(3):514–523

    Article  CAS  PubMed  Google Scholar 

  • Potts MB, Lim DA (2012) An old drug for new ideas: metformin promotes adult neurogenesis and spatial memory formation. Cell Stem Cell 11(1):5–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puerta E, Hervias I, Goñi-Allo B, Zhang SF, Jordán J, Starkov AA, Aguirre N (2010) Methylenedioxymethamphetamine inhibits mitochondrial complex I activity in mice: a possible mechanism underlying neurotoxicity. Br J Pharmacol 160:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446:165–168

    Article  CAS  PubMed  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9

    Article  CAS  PubMed  Google Scholar 

  • Shankaran M, Gudelsky GA (1999) A neurotoxic regimen of MDMA suppresses behavioral, thermal and neurochemical responses to subsequent MDMA administration. Psychopharmacology 147:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sprague JE, Everman SL, Nichols DE (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine. Neurotoxicology 19:427–441

    CAS  PubMed  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354

    Article  CAS  PubMed  Google Scholar 

  • Touriño C, Zimmer A, Valverde O (2010) THC Prevents MDMA neurotoxicity in mice. PLoS ONE 5(2):e9143

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, Tsai HN (2012) Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord 18(6):753–758

    Article  PubMed  Google Scholar 

  • Wang J, Gallagher D, DeVito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW, Kaplan DR, Miller FD (2012) Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11(1):23–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the IBRO-ARC short stay grant award to Dr. Ishola IO. This study was supported by funds from Regione Autonoma della Sardegna (Legge Regionale 7 Agosto 2007, N.7, annualità 2010). Dr. Pier Francesca Porceddu gratefully acknowledges the Sardinian Regional Government for financial support (Legge Regionale 7 Agosto 2007, N.7, annualità 2010). Dr. Liliana Contu gratefully acknowledges the University of Cagliari for the financial support (D.R. n. 269 2014). The authors are grateful to prof. Antonio Plumitallo for the synthesis of MDMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Francesca Porceddu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porceddu, P.F., Ishola, I.O., Contu, L. et al. Metformin Prevented Dopaminergic Neurotoxicity Induced by 3,4-Methylenedioxymethamphetamine Administration. Neurotox Res 30, 101–109 (2016). https://doi.org/10.1007/s12640-016-9633-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9633-5

Keywords

Navigation