Skip to main content

Advertisement

Log in

Src Family Kinase Inhibitors Antagonize the Toxicity of Multiple Serotypes of Botulinum Neurotoxin in Human Embryonic Stem Cell-Derived Motor Neurons

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins’ proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin’s enzymatic components, to antagonize multiple BoNT serotypes in motor neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleshin A, Finn RS (2010) SRC: a century of science brought to the clinic. Neoplasia 12(8):599–607

    PubMed Central  CAS  PubMed  Google Scholar 

  • Apland JP, Biser JA, Adler M, Ferrer-Montiel AV, Montal M, Canaves JM, Filbert MG (1999) Peptides that mimic the carboxy-terminal domain of SNAP-25 block acetylcholine release at an Aplysia synapse. J Appl Toxicol 19(Suppl 1):S23–S26

    Article  CAS  PubMed  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285(8):1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Bajohrs M, Rickman C, Binz T, Davletov B (2004) A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep 5(11):1090–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanes-Mira C, Ibanez C, Fernandez-Ballester G, Planells-Cases R, Perez-Paya E, Ferrer-Montiel A (2001) Thermal stabilization of the catalytic domain of botulinum neurotoxin E by phosphorylation of a single tyrosine residue. Biochemistry 40(7):2234–2242

    Article  CAS  PubMed  Google Scholar 

  • Bompiani KM, Dickerson TJ (2014) High-throughput screening technologies for botulinum neurotoxins. Curr Top Med Chem 14(18):2062–2080

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432(7019):925–929. doi:10.1038/nature03123

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT, Jin R, Breidenbach MA (2008) Highly specific interactions between botulinum neurotoxins and synaptic vesicle proteins. Cell Mol Life Sci 65(15):2296–2306. doi:10.1007/s00018-008-8088-0

    Article  CAS  PubMed  Google Scholar 

  • Capek P, Zhang Y, Barlow DJ, Houseknecht KL, Smith GR, Dickerson TJ (2011) Enhancing the pharmacokinetic properties of botulinum neurotoxin serotype A protease inhibitors through rational design. ACS Chem Neurosci 2(6):288–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceppi P, Papotti M, Monica V, Lo Iacono M, Saviozzi S, Pautasso M, Novello S, Mussino S, Bracco E, Volante M, Scagliotti GV (2009) Effects of Src kinase inhibition induced by dasatinib in non-small cell lung cancer cell lines treated with cisplatin. Mol Cancer Ther 8(11):3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Chen S (2012) Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins 4(10):913–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Barbieri JT (2011) Association of botulinum neurotoxin serotype A light chain with plasma membrane-bound SNAP-25. J Biol Chem 286(17):15067–15072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. doi:10.1158/0008-5472.CAN-09-1947

    Article  CAS  PubMed  Google Scholar 

  • Coffield JA, Yan X (2009) Neuritogenic actions of botulinum neurotoxin A on cultured motor neurons. J Pharmacol Exp Ther 330(1):352–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, Nergiz ME, Costanzo M, Baryshnikova A, Giaever G, Nislow C, Myers CL, Andrews BJ, Boone C, Roth FP (2011) Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:544. doi:10.1038/msb.2011.71

    Article  PubMed Central  PubMed  Google Scholar 

  • Congleton J, MacDonald R, Yen A (2012) Src inhibitors, PP2 and dasatinib, increase retinoic acid-induced association of Lyn and c-Raf (S259) and enhance MAPK-dependent differentiation of myeloid leukemia cells. Leukemia 26(6):1180–1188. doi:10.1038/leu.2011.390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deshpande SS, Sheridan RE, Adler M (1997) Efficacy of certain quinolines as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon 35(3):433–445

    Article  CAS  PubMed  Google Scholar 

  • Dolly JO, Lawrence GW, Meng J, Wang J, Ovsepian SV (2009) Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol 9(3):326–335

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312(5773):592–596. doi:10.1126/science.1123654

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19(12):5226–5237. doi:10.1091/mbc.E08-07-0765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Encinar JA, Fernandez A, Ferragut JA, Gonzalez-Ros JM, DasGupta BR, Montal M, Ferrer-Montiel A (1998) Structural stabilization of botulinum neurotoxins by tyrosine phosphorylation. FEBS Lett 429(1):78–82

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Montiel AV, Canaves JM, DasGupta BR, Wilson MC, Montal M (1996) Tyrosine phosphorylation modulates the activity of clostridial neurotoxins. J Biol Chem 271(31):18322–18325

    Article  CAS  PubMed  Google Scholar 

  • Fischer A (2013) Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. Curr Top Microbiol Immunol 364:115–137. doi:10.1007/978-3-642-33570-9_6

    CAS  PubMed  Google Scholar 

  • Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M (2009) Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci USA 106(5):1330–1335. doi:10.1073/pnas.0812839106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48(24):5631–5641. doi:10.1021/bi9002138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2:e167. doi:10.1038/cddis.2011.50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hakami RM, Ruthel G, Stahl AM, Bavari S (2010) Gaining ground: assays for therapeutics against botulinum neurotoxin. Trends Microbiol 18(4):164–172

    Article  CAS  PubMed  Google Scholar 

  • Hebron ML, Lonskaya I, Moussa CE (2013) Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson’s disease models. Hum Mol Genet 22(16):3315–3328. doi:10.1093/hmg/ddt192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu BY, Zhang SC (2009) Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs. Methods Mol Biol 636:123–137

    Article  Google Scholar 

  • Huang PP, Khan I, Suhail MS, Malkmus S, Yaksh TL (2011) Spinal botulinum neurotoxin B: effects on afferent transmitter release and nociceptive processing. PLoS ONE 6(4):e19126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ibanez C, Blanes-Mira C, Fernandez-Ballester G, Planells-Cases R, Ferrer-Montiel A (2004) Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. FEBS Lett 578(1–2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Kao TJ, Palmesino E, Kania A (2009) SRC family kinases are required for limb trajectory selection by spinal motor axons. J Neurosci 29(17):5690–5700

    Article  CAS  PubMed  Google Scholar 

  • Katsumata R, Ishigaki S, Katsuno M, Kawai K, Sone J, Huang Z, Adachi H, Tanaka F, Urano F, Sobue G (2012) c-Abl inhibition delays motor neuron degeneration in the G93A mouse, an animal model of amyotrophic lateral sclerosis. PLoS One 7(9):e46185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43(2):526–532

    Article  CAS  PubMed  Google Scholar 

  • Kiris E, Nuss JE, Burnett JC, Kota KP, Koh DC, Wanner LM, Torres-Melendez E, Gussio R, Tessarollo L, Bavari S (2011) Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem Cell Res 6(3):195–205. doi:10.1016/j.scr.2011.01.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiris E, Burnett JC, Kane CD, Bavari S (2014a) Recent advances in botulinum neurotoxin inhibitor development. Curr Top Med Chem 14(18):2044–2061. doi:10.2174/1568026614666141022093350

    Article  CAS  PubMed  Google Scholar 

  • Kiris E, Kota KP, Burnett JC, Soloveva V, Kane CD, Bavari S (2014b) Recent developments in cell-based assays and stem cell technologies for botulinum neurotoxin research and drug discovery. Expert Rev Mol Diagn 14(2):153–168. doi:10.1586/14737159.2014.867808

    Article  CAS  PubMed  Google Scholar 

  • Kostrzewa RM, Segura-Aguilar J (2007) Botulinum neurotoxin: evolution from poison, to research tool–onto medicinal therapeutic and future pharmaceutical panacea. Neurotox Res 12(4):275–290

    Article  CAS  PubMed  Google Scholar 

  • Kota KP, Soloveva V, Wanner LM, Gomba G, Kiris E, Panchal RG, Kane CD, Bavari S (2014) A high content imaging assay for identification of botulinum neurotoxin inhibitors. J Vis Exp 93:e51915. doi:10.3791/51915

    PubMed  Google Scholar 

  • Larsen JC (2009) US army botulinum neurotoxin (BoNT) medical therapeutics research program: past accomplishments and future directions. Drug Dev Res 70:266–278

    Article  CAS  Google Scholar 

  • Lau CG, Takayasu Y, Rodenas-Ruano A, Paternain AV, Lerma J, Bennett MV, Zukin RS (2010) SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci 30(1):242–254. doi:10.1523/JNEUROSCI.4933-08.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lebeda FJ, Cer RZ, Mudunuri U, Stephens R, Singh BR, Adler M (2010) The zinc-dependent protease activity of the botulinum neurotoxins. Toxins 2(5):978–997. doi:10.3390/toxins2050978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25(8):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF 3rd, Staunton JE, Jin X, Lee MS, Zimmermann GR, Borisy AA (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27(7):659–666. doi:10.1038/nbt.1549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, Hu BY, Jones SA, Zhang YS, Lavaute T, Du ZW, Zhang SC (2008) Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26(4):886–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Cardinale SC, Butler MM, Pai R, Nuss JE, Peet NP, Bavari S, Bowlin TL (2011a) Time-dependent botulinum neurotoxin serotype A metalloprotease inhibitors. Bioorg Med Chem 19(24):7338–7348. doi:10.1016/j.bmc.2011.10.062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Peet NP, Butler MM, Burnett JC, Moir DT, Bowlin TL (2011b) Small molecule inhibitors as countermeasures for botulinum neurotoxin intoxication. Molecules 16(1):202–220. doi:10.3390/molecules16010202

    Article  CAS  Google Scholar 

  • Liu DZ, Cheng XY, Ander BP, Xu H, Davis RR, Gregg JP, Sharp FR (2008) Src kinase inhibition decreases thrombin-induced injury and cell cycle re-entry in striatal neurons. Neurobiol Dis 30(2):201–211

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu WY, Xiong ZG, Lei S, Orser BA, Dudek E, Browning MD, MacDonald JF (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2(4):331–338. doi:10.1038/7243

    Article  CAS  PubMed  Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580(8):2011–2014

    Article  CAS  PubMed  Google Scholar 

  • McNeish J, Roach M, Hambor J, Mather RJ, Weibley L, Lazzaro J, Gazard J, Schwarz J, Volkmann R, Machacek D, Stice S, Zawadzke L, O’Donnell C, Hurst R (2010) High-throughput screening in embryonic stem cell-derived neurons identifies potentiators of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-type glutamate receptors. J Biol Chem 285(22):17209–17217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McNutt P, Celver J, Hamilton T, Mesngon M (2011) Embryonic stem cell-derived neurons are a novel, highly sensitive tissue culture platform for botulinum research. Biochem Biophys Res Commun 405(1):85–90. doi:10.1016/j.bbrc.2010.12.132

    Article  CAS  PubMed  Google Scholar 

  • Messa M, Congia S, Defranchi E, Valtorta F, Fassio A, Onofri F, Benfenati F (2010) Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J Cell Sci 123(Pt 13):2256–2265

    Article  CAS  PubMed  Google Scholar 

  • Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5(3):274–279

    Article  CAS  PubMed  Google Scholar 

  • Nuss JE, Wanner LM, Tressler LE, Bavari S (2010) The osmolyte trimethylamine N-oxide (TMAO) increases the proteolytic activity of botulinum neurotoxin light chains A, B, and E: implications for enhancing analytical assay sensitivity. J Biomol Screen 15(8):928–936. doi:10.1177/1087057110374996

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi H, Murata Y, Okazawa H, Matozaki T (2011) Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci 34(12):629–637. doi:10.1016/j.tins.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Opsenica IM, Tot M, Gomba L, Nuss JE, Sciotti RJ, Bavari S, Burnett JC, Solaja BA (2013) 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity. J Med Chem 56(14):5860–5871. doi:10.1021/jm4006077

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Cai S, Singh BR (2014) Current strategies for designing antidotes against botulinum neurotoxins. Expert Opin Drug Discov 9(3):319–333. doi:10.1517/17460441.2014.884066

    Article  CAS  PubMed  Google Scholar 

  • Pellett S (2013) Progress in cell based assays for botulinum neurotoxin detection. Curr Top Microbiol Immunol 364:257–285. doi:10.1007/978-3-642-33570-9_12

    PubMed Central  PubMed  Google Scholar 

  • Pellett S, Tepp WH, Clancy CM, Borodic GE, Johnson EA (2007) A neuronal cell-based botulinum neurotoxin assay for highly sensitive and specific detection of neutralizing serum antibodies. FEBS Lett 581(25):4803–4808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 7(3):e1002008. doi:10.1371/journal.ppat.1002008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pless DD, Torres ER, Reinke EK, Bavari S (2001) High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type A. Infect Immun 69(1):570–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rossetto O, Pirazzini M, Montecucco C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12(8):535–549. doi:10.1038/nrmicro3295

    Article  CAS  PubMed  Google Scholar 

  • Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5(4):317–328

    Article  CAS  PubMed  Google Scholar 

  • Schenone S, Brullo C, Musumeci F, Biava M, Falchi F, Botta M (2011) Fyn kinase in brain diseases and cancer: the search for inhibitors. Curr Med Chem 18(19):2921–2942

    Article  CAS  PubMed  Google Scholar 

  • Sen B, Johnson FM (2011) Regulation of SRC family kinases in human cancers. J Signal Transduct 2011:865819

    Article  PubMed Central  PubMed  Google Scholar 

  • Shu Y, Liu X, Yang Y, Takahashi M, Gillis KD (2008) Phosphorylation of SNAP-25 at Ser187 mediates enhancement of exocytosis by a phorbol ester in INS-1 cells. J Neurosci 28(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Sikorra S, Henke T, Galli T, Binz T (2008) Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins. J Biol Chem 283(30):21145–21152. doi:10.1074/jbc.M800610200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silhar P, Capkova K, Salzameda NT, Barbieri JT, Hixon MS, Janda KD (2010) Botulinum neurotoxin A protease: discovery of natural product exosite inhibitors. J Am Chem Soc 132(9):2868–2869. doi:10.1021/ja910761y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snyder DA, Kelly ML, Woodbury DJ (2006) SNARE complex regulation by phosphorylation. Cell Biochem Biophys 45(1):111–123. doi:10.1385/CBB:45:1:111

    Article  CAS  PubMed  Google Scholar 

  • Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S (2004) Foodborne botulism in the United States, 1990-2000. Emerg Infect Dis 10(9):1606–1611. doi:10.3201/eid1009.030745

    Article  PubMed Central  PubMed  Google Scholar 

  • Strotmeier J, Mahrhold S, Krez N, Janzen C, Lou J, Marks JD, Binz T, Rummel A (2014) Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A. FEBS Lett 588(7):1087–1093. doi:10.1016/j.febslet.2014.02.034

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80(3):675–690. doi:10.1016/j.neuron.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Tepp WH, Johnson EA, Chapman ER (2012) Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. Biochemistry 51(28):5655–5662. doi:10.1021/bi3004928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toth S, Brueggmann EE, Oyler GA, Smith LA, Hines HB, Ahmed SA (2012) Tyrosine phosphorylation of botulinum neurotoxin protease domains. Front Pharmacol 3:102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Videnovic M, Opsenica DM, Burnett JC, Gomba L, Nuss JE, Selakovic Z, Konstantinovic J, Krstic M, Segan S, Zlatovic M, Sciotti RJ, Bavari S, Solaja BA (2014) Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria. J Med Chem 57(10):4134–4153. doi:10.1021/jm500033r

    Article  CAS  PubMed  Google Scholar 

  • Wein LM, Liu Y (2005) Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci USA 102(28):9984–9989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitemarsh RC, Strathman MJ, Chase LG, Stankewicz C, Tepp WH, Johnson EA, Pellett S (2012) Novel application of human neurons derived from induced pluripotent stem cells for highly sensitive botulinum neurotoxin detection. Toxicol Sci 126(2):426–435. doi:10.1093/toxsci/kfr354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiesner A, Fuhrer C (2006) Regulation of nicotinic acetylcholine receptors by tyrosine kinases in the peripheral and central nervous system: same players, different roles. Cell Mol Life Sci 63(23):2818–2828. doi:10.1007/s00018-006-6081-z

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Craig TJ, Chen X, Ciufo LF, Takahashi M, Morgan A, Gillis KD (2007) Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis. J Gen Physiol 129(3):233–244. doi:10.1085/jgp.200609685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Yu D (2012) Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci 33(3):122–128

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Drs. Esta Sterneck and Balamurugan Kuppusamy for their insightful discussion concerning SFK inhibitors. Also, we thank Rajarshi Guha for R functions to optimize β for synergy calculations, and Veronica Soloveva for helpful discussion. This research was supported by grants from the Defense Threat Reduction Agency and National Institutes of Health (4R33AI101387 - 03). For JCB, this project has been funded in whole or in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under contract no. HHSN261200800001E. LT has been supported by the Intramural Research Program of the NCI, Center for Cancer Research, NIH.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erkan Kiris or Sina Bavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiris, E., Burnett, J.C., Nuss, J.E. et al. Src Family Kinase Inhibitors Antagonize the Toxicity of Multiple Serotypes of Botulinum Neurotoxin in Human Embryonic Stem Cell-Derived Motor Neurons. Neurotox Res 27, 384–398 (2015). https://doi.org/10.1007/s12640-015-9526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9526-z

Keywords

Navigation