Date: 31 Dec 2010

GABAA receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation

Abstract

Purpose

The purpose of this review is to summarize current knowledge of detailed biochemical evidence for the role of γ-aminobutyric acid type A receptors (GABAA–Rs) in the mechanisms of general anesthesia.

Principal findings

With the knowledge that all general anesthetics positively modulate GABAA-R-mediated inhibitory transmission, site-directed mutagenesis comparing sequences of GABAA-R subunits of varying sensitivity led to identification of amino acid residues in the transmembrane domain that are critical for the drug actions in vitro. Using a photo incorporable analogue of the general anesthetic, R(+)etomidate, we identified two transmembrane amino acids that were affinity labelled in purified bovine brain GABAA-R. Homology protein structural modelling positions these two residues, αM1-11’ and βM3-4’, close to each other in a single type of intersubunit etomidate binding pocket at the β/α interface. This position would be appropriate for modulation of agonist channel gating. Overall, available information suggests that these two etomidate binding residues are allosterically coupled to sites of action of steroids, barbiturates, volatile agents, and propofol, but not alcohols. Residue α/βM2-15’ is probably not a binding site but allosterically coupled to action of volatile agents, alcohols, and intravenous agents, and α/βM1-(-2’) is coupled to action of intravenous agents.

Conclusions

Establishment of a coherent and consistent structural model of the GABAA-R lends support to the conclusion that general anesthetics can modulate function by binding to appropriate domains on the protein. Genetic engineering of mice with mutation in some of these GABAA-R residues are insensitive to general anesthetics in vivo, suggesting that further analysis of these domains could lead to development of more potent and specific drugs.

Résumé

Objectif

L’objectif de cet article de synthèse est de résumer les connaissances actuelles concernant les données probantes biochimiques détaillées élucidant le rôle des récepteurs à l’acide γ-aminobutyrique de type A (R-GABAA) dans les mécanismes de l’anesthésie générale.

Constatations principales

Tous les anesthésiques généraux modulent positivement la transmission inhibitrice médiée par les R-GABAA. On a identifié les acides aminés du domaine transmembranaire représentant des sites d’action importants des médicaments, en effectuant des mutations ciblées sur des séquences de sous-unités des R-GABAA et en comparant leur sensibilité. À l’aide d’un analogue photo luminescent de l’anesthésique général étomidate R(+), nous avons identifié deux acides aminés transmembranaires marquées par affinité dans les R-GABAA purifiés de cerveau bovin. Un modèle structurel de protéine par homologie place ces deux résidus, soit αM1-11’ et βM3-4’, à proximité l’un de l’autre dans un type unique de poche de liaison d’étomidate inter-sous-unité au niveau de l’interface β/α. Cette position sera adaptée pour moduler le portillon des canaux agonistes. Globalement, les données disponibles suggèrent que des deux résidus se liant à l’étomidate sont couplés de façon allostérique aux sites d’action des stéroïdes, des barbituriques, des agents volatils et du propofol, mais pas à ceux des alcools. Le résidu α/βM2-15’ n’est probablement pas un site de liaison, mais il est couplé de façon allostérique à l’action des agents volatils, des alcools et des agents intraveineux, et le α/βM1-(-2’) est couplé à l’action des agents intraveineux.

Conclusion

La création d’un modèle structurel cohérent et logique des R-GABAA appuie notre conclusion selon laquelle les anesthésiques généraux peuvent moduler leur fonction en se liant à des domaines spécifiques sur la protéine. Les souris génétiquement modifiées porteuses d’une mutation dans certains de ces résidus de R-GABAA ne sont pas sensibles aux anesthésiques généraux in vivo, ce qui suggère qu’une analyse plus approfondie de ces domaines pourrait permettre la mise au point de médicaments à la fois plus puissants et plus spécifiques.

This article is accompanied by an editorial. Please see Can J Anesth 2011; 58(2).