Skip to main content

Advertisement

Log in

Something Old and Something New: An Update on the Amazing Repertoire of Bacteriocins Produced by Streptococcus salivarius

Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Streptococcus salivarius has an exclusive and intimate association with humans. We are its sole natural host, and its contribution to the relationship appears overwhelmingly benevolent. Beautifully adapted to its preferred habitat, the human tongue, it only rarely ventures far from this location in the healthy host and indeed appears ill-equipped to become invasive due to a scarcity of virulence attributes. We consider that its strategically advantageous lingual location and numerical predominance allow S. salivarius to carry out a population surveillance and modulation role within the oral microbiota. Some strains are armed with complex arrays of targeted antibiotic weaponry, much of which belongs to the lantibiotic class of bacteriocins and a key to their ability to assemble and utilize this armament is their possession of transmissible multi-bacteriocin-encoding megaplasmid DNA. This review traces the origins of research into S. salivarius bacteriocins and bacteriocin-like inhibitory substances, showcases some of the inhibitory activities that we currently have knowledge of, and speculates about potential directions for ongoing investigation and probiotic application of this previously under-rated human commensal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andrews S (1997). Investigation of factors influencing the implantation of Streptococcus salivarius strain Min5 onto the human tongue. Department of Microbiology. Dunedin, University of Otago. BMedSci: 87

  2. Asaduzzaman SM, Nagao J et al (2009) Nukacin ISK-1, a bacteriostatic lantibiotic. Antimicrob Agents Chemother 53(8):3595–3598

    Article  CAS  Google Scholar 

  3. Balakrishnan M, Simmonds RS et al (2001) Diverse activity spectra of bacteriocin-like inhibitory substances having activity against mutans streptococci. Caries Res 35(1):75–80

    Article  CAS  Google Scholar 

  4. Bishop CJ, Aanensen DM et al (2009) Assigning strains to bacterial species via the internet. BMC Biol 7:3

    Article  CAS  Google Scholar 

  5. Bisno AL (1991) Group A streptococcal infections and acute rheumatic fever. N Engl J Med 325(11):783–793

    CAS  Google Scholar 

  6. Bouwer A (2006) Activation of natural killer cells by dendritic cells stimulated by gram-positive bacterial cell wall components. Department of Microbiology and Immunology. Dunedin, University of Otago. BSc (Hons): 41

  7. Burton JP, Chilcott CN et al (2006) A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J Appl Microbiol 100(4):754–764

    Article  CAS  Google Scholar 

  8. Burton JP, Wescombe PA et al (2006) Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 72(4):3050–3053

    Article  CAS  Google Scholar 

  9. Carapetis, J. R. (2004) Group A streptococcal vaccine development: current status and issues of relevance to less developed countries. WHO/FCH/CAH/05.09. Geneva:World Health Organization. Volume, DOI:

  10. Carapetis JR (2007) Rheumatic heart disease in developing countries. N Engl J Med 357(5):439–441

    Article  CAS  Google Scholar 

  11. Carapetis JR, Steer AC et al (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5(11):685–694

    Article  Google Scholar 

  12. Carlsson J, Grahnen H et al (1970) Early establishment of Streptococcus salivarius in the mouths of infants. J Dent Res 49:415–418

    CAS  Google Scholar 

  13. Chilcott CN, Crowley L et al (2005) Elevated levels of interferon gamma in human saliva following ingestion of Streptococcus salivarius K12. Joint meeting of New Zealand Microbiological Society and New Zealand Biochemistry and Molecular Biology, Dunedin

    Google Scholar 

  14. Chilcott CN and Tagg JR (2007) Antimicrobial composition. Patent. USA

  15. Cosseau C, Devine DA et al (2008) The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun 76(9):4163–4175

    Article  CAS  Google Scholar 

  16. Dale JB (2008) Current status of group A streptococcal vaccine development. Adv Exp Med Biol 609:53–63

    Article  Google Scholar 

  17. Delorme C, Poyart C et al (2007) Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J Bacteriol 189(4):1330–1341

    Article  CAS  Google Scholar 

  18. Dempster RP, Tagg JR (1982) “The production of bacteriocin-like substances by the oral bacterium Streptococcus salivarius. Arch Oral Biol 27(2):151–157

    Article  CAS  Google Scholar 

  19. Dierksen KP, Moore CJ et al (2007) “The effect of ingestion of milk supplemented with salivaricin A-producing Streptococcus salivarius on the bacteriocin-like inhibitory activity of streptococcal populations on the tongue. FEMS Microbiol Ecol 59(3):584–591

    Article  CAS  Google Scholar 

  20. Dierksen KP and Tagg J (2000) The influence of indigenous bacteriocin-producing Streptococcus salivarius on the acquisition of Streptococcus pyogenes by primary school children in Dunedin, New Zealand. Streptococci and streptococcal diseases entering the new millennium. DR Martin and TJ Auckland, Securacopy: 81–85

  21. Dodd SJ (1999) A saliva model to demonstrate Streptococcus salivarius BLIS production and characterisation of salivaricin MPS. University of Otago, Dunedin

    Google Scholar 

  22. Favier CF, Vaughan EE et al (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68(1):219–226

    Article  CAS  Google Scholar 

  23. Georgalaki MD, Van Den Berghe E et al (2002) Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Appl Environ Microbiol 68(12):5891–5903

    Article  CAS  Google Scholar 

  24. Hyink O, Wescombe PA et al (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73(4):1107–1113

    Article  CAS  Google Scholar 

  25. Hynes WL, Friend VL et al (1994) Duplication of the lantibiotic structural gene in M-type 49 group A streptococcus strains producing streptococcin A-M49. Appl Environ Microbiol 60(11):4207–4209

    CAS  Google Scholar 

  26. Hynes WL, Tagg JR (1984) Bacteriocin-like activity of an M-type 25 group A Streptococcus. Proc Univ Otago Med Sch 62:109–110

    Google Scholar 

  27. Hynes WL, Tagg JR (1985) Production of broad-spectrum bacteriocin-like activity by group A streptococci of particular M-types. Zentralbl Bakteriol Mikrobiol Hyg [A] 259(2):155–164

    CAS  Google Scholar 

  28. Ivanova I, Miteva V et al (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42(3):147–158

    Article  CAS  Google Scholar 

  29. Johnson DW, Tagg JR et al (1979) Production of a bacteriocin-like substance by group-A streptococci of M-type 4 and T-pattern 4. J Med Microbiol 12(4):413–427

    Article  CAS  Google Scholar 

  30. Karaya K, Shimizu T et al (2001) New gene cluster for lantibiotic streptin possibly involved in streptolysin S formation. J Biochem (Tokyo) 129(5):769–775

    CAS  Google Scholar 

  31. Kazor CE, Mitchell PM et al (2003) Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41(2):558–563

    Article  CAS  Google Scholar 

  32. Kennedy KL (1995) Saliva-dependent autoinhibitory activity of Streptococcus salivarius strain 6. Department of Microbiology. Dunedin, University of Otago. BSc (Hons): 43

  33. Lennon D (2004) Acute rheumatic fever in children: recognition and treatment. Paediatr Drugs 6(6):363–373

    Article  Google Scholar 

  34. Lester H (2006) The relationship between β-haemolysis and bacteriocin-like inhibitory substance (BLIS) production of Streptococcus salivarius. Department of Microbiology. Dunedin, University of Otago. BSc (Hons): 43

  35. Lewus CB, Sun S et al (1992) Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl Environ Microbiol 58(1):143–149

    CAS  Google Scholar 

  36. Liljemark WF, Gibbons RJ (1973) Suppression of Candida albicans by human oral streptococci in gnotobiotic mice. Infect Immun 8(5):846–849

    CAS  Google Scholar 

  37. Loesche WJ, Kazor C (2002) Microbiology and treatment of halitosis. Periodontol 28:256–279

    Article  Google Scholar 

  38. MacFarlane TW (1984) The oral ecology of patients with severe Sjogren’s syndrome. Microbios 41(160):99–106

    CAS  Google Scholar 

  39. Papadelli M, Karsioti A et al (2007) Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus. FEMS Microbiol Lett 272(1):75–82

    Article  CAS  Google Scholar 

  40. Phelps HA, Neely MN (2007) SalY of the Streptococcus pyogenes lantibiotic locus is required for full virulence and intracellular survival in macrophages. Infect Immun 75(9):4541–4551

    Article  CAS  Google Scholar 

  41. Power DA, Burton JP et al (2008) Preliminary investigations of the colonisation of upper respiratory tract tissues of infants using a paediatric formulation of the oral probiotic Streptococcus salivarius K12. Eur J Clin Microbiol Infect Dis 27(12):1261–1263

    Article  CAS  Google Scholar 

  42. Robson CL, Wescombe PA et al (2007) Isolation and partial characterization of the Streptococcus mutans type AII lantibiotic mutacin K8. Microbiology 153(Pt 5):1631–1641

    Article  CAS  Google Scholar 

  43. Ross KF, Ronson CW et al (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59(7):2014–2021

    CAS  Google Scholar 

  44. Russell C, Tagg JR (1981) Role of bacteriocin during plaque formation by Streptococcus salivarius and Streptococcus sanguis on a tooth in an artificial mouth. J Appl Bacteriol 50(2):305–313

    CAS  Google Scholar 

  45. Sanders CC, Sanders WE (1982) Enocin: an antibiotic produced by Streptococcus salivarius that may contribute to protection against infections due to Group A Streptococci. J Infect Dis 146:683–690

    CAS  Google Scholar 

  46. Simpson WJ, Ragland NL et al (1995) A lantibiotic gene family widely distributed in Streptococcus salivarius and Streptococcus pyogenes. Dev Biol Stand 85:639–643

    CAS  Google Scholar 

  47. Tagg JR (1991) Studies of “BLIS-ful” oral bacteria. N Z Dent J 87(387):14–16

    CAS  Google Scholar 

  48. Tagg JR, Bannister LV (1979) “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocin-like inhibitors. J Med Microbiol 12(4):397–411

    Article  CAS  Google Scholar 

  49. Tagg JR, Pybus V et al (1983) Application of inhibitor typing in a study of the transmission and retention in the human mouth of the bacterium Streptococcus salivarius. Arch Oral Biol 28(10):911–915

    Article  CAS  Google Scholar 

  50. Tagg JR, Ragland NL et al (1990) A longitudinal study of Lancefield group A streptococcus acquisitions by a group of young Dunedin schoolchildren. N Z Med J 103(897):429–431

    CAS  Google Scholar 

  51. Tagg JR, Russell C (1981) Bacteriocin production by Streptococcus salivarius strain P. Can J Microbiol 27(9):918–923

    Article  CAS  Google Scholar 

  52. Tompkins GR, Tagg JR (1987) Bacteriocin-like inhibitory activity associated with beta-hemolytic strains of Streptococcus salivarius. J Dent Res 66(8):1321–1325

    CAS  Google Scholar 

  53. Tompkins GR, Tagg JR (1989) The ecology of bacteriocin-producing strains of Streptococcus salivarius. Microb Ecol Health Dis 2:19–28

    Article  Google Scholar 

  54. Upton M, Tagg JR et al (2001) Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183(13):3931–3938

    Article  CAS  Google Scholar 

  55. Walls T, Power D et al (2003) Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? J Med Microbiol 52(Pt 9):829–833

    Article  CAS  Google Scholar 

  56. Wang Y (2007) Purification and characterisation of novel bacteriocin salivaricin MPS. Department of Biochemistry. Dunedin, University of Otago. PGDipSci: 39

  57. Wescombe PA (2002) Characterisation of lantibiotics produced by Streptococcus salivarius and Streptococcus pyogenes. Department of Microbiology and Immunology. Dunedin, University of Otago: 324

  58. Wescombe PA, Burton JP et al (2006) Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Van Leeuwenhoek 90(3):269–280

    Article  CAS  Google Scholar 

  59. Wescombe PA, Tagg JR (2003) Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69(5):2737–2747

    Article  Google Scholar 

  60. Wescombe PA, Upton M et al (2006) Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72(2):1459–1466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Tagg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wescombe, P.A., Heng, N.C.K., Burton, J.P. et al. Something Old and Something New: An Update on the Amazing Repertoire of Bacteriocins Produced by Streptococcus salivarius . Probiotics & Antimicro. Prot. 2, 37–45 (2010). https://doi.org/10.1007/s12602-009-9026-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-009-9026-7

Keywords

Navigation