Skip to main content
Log in

Modelling the effect of climate change on the wave climate of the world’s oceans

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

This paper analyses the trends and the future projections of significant wave height in several ocean areas at different parts of the world. It uses a stochastic Bayesian hierarchical space-time model, with a regression component with atmospheric levels of CO2 as covariates in order to estimate the expected long-term trends and make future projections towards the year 2100. The model was initially developed for an area in the North Atlantic ocean, and has been found to perform reasonably well there, and it is now investigated how the model performs for other ocean areas. 11 new ocean areas have been analysed with the model, and this paper presents the results pertaining to the estimated long-term trends and future projections of monthly maximum significant wave height for each of the 12 ocean areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade C, Pires HO, Taborda R, Freitas MC (2007) Projecting future changes in wave climate and coastal response in Portugal by the end of the 21st century. J Coast Res 50:253–257

    Google Scholar 

  • Bitner-Gregersen EM, de Valk C (2008) Quality Control Issues in Estimating Wave Climate from Hindcast and Satellite Data. In: Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2008), American Society of Mechanical Engineers, Estoril, Portugal, 15–20 Jun, pp 819–827

  • Bitner-Gregersen EM, Hagen Ø (1990) Uncertainties in data for the offshore environment. Struct Saf 7:11–34

    Article  Google Scholar 

  • Caires S, Sterl A (2005) A New Nonparametric Method to Correct Model Data: Application to Significant Wave Height from ERA-40 Re-Analysis. J Atmos Ocean Tech 22:443–459

    Article  Google Scholar 

  • Caires S, Swail V (2004) Global wave climate trend and variability analysis. In: Preprints of 8th International Workshop on Wave Hindcasting and Forecasting, North Shore, Hawaii, 14–19 Nov

  • Caires S, Swail VR, Wang XL (2006) Projection and Analysis of Extreme Wave Climate. J Climate 19:5581–5605

    Article  Google Scholar 

  • Debernard JB, Røed LP (2008) Future wind, wave and storm surge climate in the Northern Seas: A revisit. Tellus A 60:427–438

    Article  Google Scholar 

  • Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: An ensemble study. Ocean Dynam 58:199–212

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 p

  • Jain AK, Kheshgi HS, Hoffert MI, Wuebbles DJ (1995) Distribution of radiocarbon as a test of global carbon cycle models. Global Biogeochem Cy 9:153–166

    Article  Google Scholar 

  • Jain AK, Kheshgi HS, Wuebbles DJ (1994) Integrated Science Model for Assessment of Climate Change. Technical report UCRL-JC-116526, Lawrence Livermore National Laboratory, 19 p

  • Janssen PA, Viterbo P (1996) Ocean Waves and the Atmospheric Climate. J Climate 9:5581–5605

    Article  Google Scholar 

  • Kheshgi HS, Jain AK (2003) Projecting future climate change: Implications of carbon cycle model intercomparisons. Global Biogeochem Cy 17:1047

    Article  Google Scholar 

  • Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Global Planet Change 63:152–162

    Article  Google Scholar 

  • Mori N, Yasuda T, Mase H, Tom T, Oku Y (2010) Projection of Extreme Wave Climate Change under Global Warming. Hydrol Res Lett 4:15–19

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grügler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Emissions scenarios. Cambridge University Press

  • Natvig B, Tvete IF (2007) Bayesian Hierarchical Space-time Modeling of Earthquake Data. Methodol Comput Appl 9:89–114

    Article  Google Scholar 

  • Ruggiero P, Komar PD, Allan JC (2010) Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coast Eng 57:539–552

    Google Scholar 

  • Sasaki W, Hibiya T, Kayahara T (2006) Interannual variability and future projections of summertime ocean wave heights in the western North Pacific. Ocean Sci Discuss 3:1637–1651

    Article  Google Scholar 

  • Sterl A, Caires S (2005) Climatology, Variability and Extrema of Ocean Waves: The Web-based KNMI/ERA-40 Wave Atlas. Int J Climatol 25:963–977

    Article  Google Scholar 

  • Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric Carbon Dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC Data, 1974–1985. J Geophys Res 94:8549–8565

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Vitebro P, Woolen J (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Vanem E (2011) Long-term time-dependent stochastic modelling of extreme waves. Stoch Env Res Risk A 25:185–209

    Article  Google Scholar 

  • Vanem E, Bitner-Gregersen E (2012) Stochastic modelling of long-term trends in the wave climate and its potential impact on ship structural loads. Appl Ocean Res. Doi: 10.1016/j.apor.2012.05.006

  • Vanem E, Huseby AB, Natvig B (2012a) A Bayesian Hierarchical Spatio-Temporal Model for Significant Wave Height in the North Atlantic. Stoch Env Res Risk A. doi: 10.1007/s00477-011-0522-4

  • Vanem E, Huseby AB, Natvig B (2011) Bayesian Hierarchical Spatio-Temporal Modelling of Trends and Future Projections in the Ocean Wave Climate with a CO2 Regression Component. (Submitted)

  • Vanem E, Huseby AB, Natvig B (2012b) Modeling Ocean Wave Climate with a Bayesian Hierarchical Space-Time Model and a Log-Transform of the Data. Ocean Dynam 62:355–375

    Article  Google Scholar 

  • Wang XJ, Zwiers FW, Swail VR (2004) North Atlantic Ocean Wave Climate Change Scenarios for the Twenty-First Century. J Climate 17:2368–2383

    Article  Google Scholar 

  • Wang XL, Swail VR (2006) Climate change signal and uncertainty in projections of ocean wave heights. Clim Dynam 26:109–126

    Article  Google Scholar 

  • Wikle CK (2003) Hierarchical Models in Environmental Science. Int Stat Rev 71:181–199

    Article  Google Scholar 

  • Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5:117–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Vanem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanem, E., Natvig, B. & Huseby, A.B. Modelling the effect of climate change on the wave climate of the world’s oceans. Ocean Sci. J. 47, 123–145 (2012). https://doi.org/10.1007/s12601-012-0013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-012-0013-7

Key words

Navigation