Skip to main content
Log in

Immobilization of hemoglobin within channel of mesoporous TiO2-SiO2 composite

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this investigation, mesoporous TiO2-SiO2 composites with different Ti/Si molecular ratios were synthesized by one pot method. Apart from the characterization by small angle X-ray diffraction (SAXRD), transmission electron microscope (TEM) and N2 absorption-desorption isotherms, these mesoporous materials were used in the adsorption and enrich of biological molecules. The results demonstrate that TiO2-SiO2 composites possess the ordered mesoporous structure with uniform pore. Bovine hemoglobin (BHb) can be immobilized within the mesopore of the composite and the immobilization amount increases with the Ti/Si molecular ratio. It is speculated that the strong electrostatic interaction between biomolecule and the inner surface of mesoporous materials enhances the adsorption of BHb. Moreover, our investigation confirms that the absorbed BHb still effectively retains its bioactivity, which is very significant for the potential application of this hybrid material in biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yiu H.H.P., and Wright P.A., Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hydrid, J. Mater. Chem., 2005, 15(35–36): 3690.

    Article  CAS  Google Scholar 

  2. Maarel M.J.E.C., Veen B., Uitdehaag J.C.M., Leemhuis H., and Dijkhuizen L., Properties and applications of starch-converting enzymes of the α-amylase family, J. Biotechnol., 2002, 94(2): 137.

    Article  Google Scholar 

  3. Rajendhran J., and Gunasekaran P., Recent biotechnological interventions for developing improved penicillin G acylases, J. Biosci. Bioeng, 2004, 97(1): 1.

    CAS  Google Scholar 

  4. Lei J., Fan J., Yu C.Z., Zhang L.Y., Jiang S.Y., Tu B., and Zhao D.Y., Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace, Micro. Meso. Mater., 2004, 73(3):121.

    Article  CAS  Google Scholar 

  5. Diaz J.F., and Balkus K.J., Enzyme immobilized in MCM-41 molecular sieve, J. Mol. Catal. B: Enzym, 1996, 2(2–3): 115.

    Article  CAS  Google Scholar 

  6. Takahashi H., Li B., Sasaki T., Miyazaki C., Kajino T., and Inagaki S., Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica, Chem. Mater., 2000, 12(11): 3301.

    Article  CAS  Google Scholar 

  7. Washmon-Kriel L., Jimenez V.L., and Balkus K.J., Cytochrome c immobilization into mesoporous molecular sieves, J. Mol. Catal. B: Enzyme, 2000, 10(5): 453.

    Article  CAS  Google Scholar 

  8. Han Y.J., Watson J.T., Stucky G.D., and Butler A., Catalytic activity of mesoporous silicate-immobilized chloroperoxidase, J. Mol. Catal. B: Enzym, 2002, 17(1): 1.

    Article  CAS  Google Scholar 

  9. Deere J., Magner E., Wall J.G., and Hodnett B.K., Mechanistic and structural features of protein adsorption onto mesoporous silicates, J. Phys. Chem. B, 2002, 106(29): 7340.

    Article  CAS  Google Scholar 

  10. Lei C.H., Shin Y.S., Liu J., and Ackerman E.J., Entrapping enzyme in a functionalized nanoporous support, J. Am. Chem. Soc., 2002, 124(38): 11242.

    Article  CAS  Google Scholar 

  11. Deere J., Magner E., Wall J.G., and Hodnett B.K., Adsorption and activity of cytochrome c on mesoporous silicates, Chem. Commun., 2001, (5): 465.

  12. Takahashi H., Li B., Sasaki T., Miyazaki C., Kajino T., and Inagaki S., Immobilized enzyme in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent, Micro. Meso. Mater., 2001, 44–45: 755.

    Article  Google Scholar 

  13. Kisler J.M., Dalher A., Stevens G.W., and O’Connor A.J., Separation of biological molecules using mesoporous molecule sieves, Micro. Meso. Mater., 2001, 44–45: 769.

    Article  Google Scholar 

  14. Dong W.Y., Sun Y.J., Lee C.W., Hua W.M., Lu X.C., Shi Y.F., Zhang S.C., and Zhao D.Y., Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures, J. Am. Chem. Soc., 2007, 129(45): 13894.

    Article  CAS  Google Scholar 

  15. Gao Q., Xu W.J., Xu Y., Wu D., Sun Y.H., Deng F., and Shen W.L., Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions, J. Phys. Chem. B, 2008, 112(7): 2261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Wang or Zhigang Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Chu, S., Kong, F. et al. Immobilization of hemoglobin within channel of mesoporous TiO2-SiO2 composite. Rare Metals 30 (Suppl 1), 144–146 (2011). https://doi.org/10.1007/s12598-011-0257-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0257-x

Keywords

Navigation