Skip to main content
Log in

Diffraction Lloyd mirror interferometer

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

An Erratum to this article was published on 28 April 2013

Abstract

Present work describes the principle and realization of diffraction Lloyd’s mirror interferometer. In this new system light diffracted from an aperture is divided into two wavefronts which are again superimposed on each other with the help of a Lloyd’s mirror. This setup generates two beam interference fringes analogous to that the well known Lloyd’s mirror interferometer. It has been shown that these interference fringes can be produced with vertical as well as horizontal polarized incident light. Experimental test results on phase objects using this system are also presented. Further, applications of this interferometer are discussed in various emerging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Malacara-Hernández, D., Servín, M., Malacara, Z.: Interferogram Analysis for Optical Testing. Marcel Dekker, New York (2005)

    Book  Google Scholar 

  2. Hariharan, P.: Optical interferometry. Academic Press, San Diego (2003)

    Google Scholar 

  3. A.A. Hamza, M.A. Mabrouk, W.A. Ramadan, A.M. Emara, “Refractive index and thickness determination of thin-films using Lloyd’s interferometer” Opt. Commun. 225, 341–348 (2003)

    Article  ADS  Google Scholar 

  4. R. Kumar, D.P. Chhachhia, A.K. Aggarwal, “Retrieval of infinite-fringe mode information from beam folding interferometer for direct phase visualization” J. Opt. A: Pure Appl. Opt. 8, 747–751 (2006)

    Article  ADS  Google Scholar 

  5. R. Kumar, A.K. Aggarwal, “Interferometric moiré pattern encoded security holograms with concealed phase pattern” Opt. Commun. 279, 120–123 (2007)

    Article  ADS  Google Scholar 

  6. J. Boor, N. Geyer, U. Gösele, V. Schmidt, “Three-beam interference lithography: upgrading Lloyd’s interferometer for single exposure hexagonal patterning” Opt. Lett. 34, 1783–1785 (2009)

    Article  ADS  Google Scholar 

  7. R. Kumar, S.K. Kaura, D.P. Chhachhia, A.K. Aggarwal, “Direct visualization of Young’s boundary diffraction wave” Opt. Commun. 276, 54–57 (2007)

    Article  ADS  Google Scholar 

  8. M. Born, E. Wolf: Principles of Optics. Pergamon, Oxford (1993)

    Google Scholar 

  9. P.H. Langenbeck, “Lloyd Interferometer Applied to Flatness Testing” Appl. Opt. 6, 1707–1714 (1967)

    Article  ADS  Google Scholar 

  10. R.N. Wolfe, F.C. Eisen, “Irradiance distribution in a Lloyd mirror interference pattern” J. Opt. Soc. Am. 38, 706–711 (1948)

    Article  ADS  Google Scholar 

  11. R. Kumar, D.P. Chhachhia, A.K. Aggarwal, “Folding mirror schlieren diffraction interferometer” Appl. Opt. 45, 6708–6711 (2006)

    Article  ADS  Google Scholar 

  12. R. Kumar, S.K. Kaura, A.K. Sharma, D.P. Chhachhia and A.K. Aggarwal, “Knife-edge diffraction pattern as an interference phenomenon: an experimental reality” Opt. Laser Tech. 39, 256–261 (2007)

    Article  ADS  Google Scholar 

  13. G.S. Settles: Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Springer, Berlin (2001)

    MATH  Google Scholar 

  14. R. Kumar, “Structure of boundary diffraction wave revisited” Appl. Phys. B -Lasers Opt. 90, 379–382 (2008)

    Article  ADS  Google Scholar 

  15. R. G. Kouyoumjian, P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface” Proc. IEEE 62, 1448–1461 (1974)

    Article  ADS  Google Scholar 

  16. A. Rubinowicz, “Thomas Young and the theory of diffraction” Nature 180, 160–162

  17. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays” Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  18. C. Genet, T.W. Ebbesen, “Light in tiny holes” Nature 445, 39–46 (2007)

    Article  ADS  Google Scholar 

  19. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays” Rep. Prog. Phys. 72, 064401 (2009)

    Article  ADS  Google Scholar 

  20. T. Young, “The Bakerian lecture: On the theory of light and colors” Phil. Trans. R. Soc. London 20, 12–48 (1802)

    Google Scholar 

  21. S.V. Kukhlevsky, “Enhanced transmission of light through subwavelength nanoapertures by far-field multiplebeam interference” Phys. Rev. A 78, 023826 (2008)

    Google Scholar 

  22. R. Kumar, “Extraordinary optical transmission by interference of diffracted wavelets” Opt. Appl. 40, In Press (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12596-013-0135-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R. Diffraction Lloyd mirror interferometer. J Opt 39, 90–101 (2010). https://doi.org/10.1007/s12596-010-0025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-010-0025-6

Key words

Navigation