, Volume 61, Issue 4, pp 267-278

ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Despite substantial efforts, the entire cystic fibrosis transmembrane conductance regulator (CFTR) protein proved to be difficult for structural analysis at high resolution, and little is still known about the actual dimensions of the anion-transporting pathway of CFTR channel. In the present study, we therefore gauged geometrical features of the CFTR Cl channel pore by a nonelectrolyte exclusion technique. Polyethylene glycols with a hydrodynamic radius (R h) smaller than 0.95 nm (PEG 300–1,000) added from the intracellular side greatly suppressed the inward unitary anionic conductance, whereas only molecules with R h ≤ 0.62 nm (PEG 200–400) applied extracellularly were able to affect the outward unitary anionic currents. Larger molecules with R h = 1.16–1.84 nm (PEG 1,540–3,400) added from either side were completely excluded from the pore and had no significant effect on the single-channel conductance. The cut-off radius of the inner entrance of CFTR channel pore was assessed to be 1.19 ± 0.02 nm. The outer entrance was narrower with its cut-off radius of 0.70 ± 0.16 nm and was dilated to 0.93 ± 0.23 nm when a non-hydrolyzable ATP analog, 5′-adenylylimidodiphosphate (AMP-PNP), was added to the intracellular solution. Thus, it is concluded that the structure of CFTR channel pore is highly asymmetric with a narrower extracellular entrance and that a dilating conformational change of the extracellular entrance is associated with the channel transition to a non-hydrolytic, locked-open state.

O.V. Krasilnikov and R.Z. Sabirov contributed equally to this work.