, Volume 92, Issue 4, pp 649-663
Date: 08 Sep 2012

Primates in the Eocene

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The mammalian order Primates made its first appearance in the fossil record during the Paleocene–Eocene thermal maximum (PETM), the global greenhouse warming event that marks the beginning of the Eocene. Two primate superfamilies, Tarsioidea and Adapoidea, dominate early and middle Eocene primate faunas. Warm climates enabled primates to thrive, and warming events within the Eocene facilitated cosmopolitan dispersal. Declining diversity at the end of the Eocene reflects environmental cooling. Fossils of earliest Tarsioidea and Adapoidea are similar dentally, often confused, and appear closely related as stem or crown Haplorhini. The superfamily Tarsioidea is represented by a single genus, Tarsius, living today, while Adapoidea appear to be ancestral to living Anthropoidea. Little is known of the Eocene history of strepsirrhine Lemuroidea and Lorisoidea. Temporal scaling of molecular clock ages suggests that Strepsirrhini appeared before Haplorhini in the Paleocene or possibly with Haplorhini at the beginning of the Eocene. Substantial skeletons of Eocene primates like those of adapoid Darwinius and Europolemur from Messel in Germany and Notharctus and Smilodectes from western North America constrain phylogenetic interpretation of primate relationships much more than dental remains ever can. A specialised grasping foot distinguishes early primates from other mammals. Traits associated in a functional complex include replacement of claws by nails on all digits; movement of the pedal fulcrum from the metatarsals to the tarsals; elongation of digit IV relative to digit III, with reduction of digit II and sometimes III; and then secondary development of a grooming claw or claws on digits II and sometimes III. The specialised grasping foot of early primates was later moderated in the emergence of anthropoid primates.

This article is a contribution to the special issue “Messel and the terrestrial Eocene - Proceedings of the 22nd Senckenberg Conference”