Skip to main content
Log in

Forbidden fruits in the Garden of Ediacara

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

The expulsion of jellyfish from the "Garden of Ediacara", as described by Adolf Seilacher, has challenged the “gelatinous ocean” stereotype; however, not all discoidal fossils can be interpreted as holdfast structures, sandy skeletons of benthic organisms, microbial colonies, fungal fairy rings, or erosional scratch circles. Here I describe a late Ediacaran (~550 Ma) medusiform organism, Bjarmia cycloplerusa gen. et sp. nov., preserved as a composite mould in a steep crescentic erosional scour cast in fine-laminated sandstone from the Erga Formation in the Southeast White Sea area. Biostratinomic features point to an allochthonous burial of a bowl-shaped body as it trapped mud pebbles when it was suspended in a sediment-laden flow. An unprecedented range of preserved characters, including moulds of a coronal and longitudinal muscles, suggests affinities with scyphomedusae. The organism is reconstructed as a coronate-like jellyfish, with numerous pedalia separated one from another by deep radiating slits, four deep subgenital pits in the floor of the subumbrella, and a skirt of poorly differentiated tentacle-like structures surrounding the large four-cornered mouth opening. Rhopalia and marginal lappets are not preserved in the specimen. Bjarmia cycloplerusa gen. et sp. nov., if borne out by future research, can be used as evidence for a substantial branching by the late Ediacaran within-stem cnidarian lineages—a largely cryptic component of the pre-Cambrian biota—and raises questions about the nature of late Ediacaran food webs.

Kurzfassung

Die “Vertreibung” von Quallen aus dem von Adolf Seilacher beschriebenen “Garten von Ediacara” lässt das Bild eines “gelatinösen Ozeans” fraglich erscheinen. Dennoch können nicht alle discoidalen Fossilien als Haftorgan-Strukturen, sandige Skelette benthischer Organismen, mikrobielle Kolonien, kreisförmig auftretende Pilz-Fruchtkörper (Hexenringe), oder Scharrkreise interpretiert werden. In vorliegender Arbeit wird der medusenförmige Organismus Bjarmia cycloplerusa gen. et sp. nov. aus dem späten Ediacarium (~550 Ma) beschrieben. Das Fossil ist als Abdruck in einer fein laminierten Sandsteinfazies der Erga-Formation aus der südöstlichen Weißmeer-Region erhalten. Biostratinomische Merkmale, wie beispielsweise im zentralen Bereich des Fossils befindliche Tonklasten, deuten auf eine allochthone Einbettung des ehemals schalenförmigen Körpers innerhalb eines Suspensionsstromes hin. Eine bisher nie dagewesen Fülle von erhalten gebliebenen Merkmalen, darunter z. B. Abdrücke koronaler und longitudinaler Muskeln, deuten auf eine Verwandtschaft mit Scyphomedusen hin. Der Organismus wird als Coronata-artige Qualle mit zahlreichen, jeweils durch tiefe radiale Fugen getrennten Pedalia, vier tiefen, an der Unterseite der Subumbrella gelegenen Subgenitalhöhlen, sowie schlecht differenzierten tentakelartige Strukturen, welche die große viereckige Mundöffnung saumartig umgeben, rekonstruiert. Sowohl Rhopalia als auch randliche Hautlappen sind in dem untersuchten Exemplar nicht erhalten. Sollten diese Interpretationen durch zukünftige Studien noch weiter bekräftigt werden können, dann dokumentiert Bjarmia cycloplerusa gen. et sp. nov. eine bereits im späten Ediacarium auftretende Verzweigung innerhalb der Stammlinie der Cnidaria—einem weitestgehend kryptischen Bestandteil der präkambrischen Lebewelt—wirft jedoch auch gleichzeitig Fragen bezüglich der Nahrungsnetze im späten Ediacarium auf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brandt, A. 1871. Fossile Medusen. Mémoires de l’Académie Impériale des Sciences de St.-Pétersbourg, VII Série 16(11):1–28.

  • Buss, L.W., and A. Seilacher. 1994. The phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20(1): 1–4.

    Article  Google Scholar 

  • Butterfield, N.J. 2007. Macroecovolution and macroecology through deep time. Palaeontology 50: 41–55.

    Article  Google Scholar 

  • Cartwright, P., S.L. Halgedahl, J.R. Hendricks, R.D. Jarrard, A.C. Marques, A.G. Collins, and B.S. Lieberman. 2007. Exceptionally preserved jellyfishes from the middle Cambrian. PLoS One 2(10): e1121. doi:10.1371/journal.pone.0001121.

    Article  Google Scholar 

  • Dong, X.-P., J.A. Cunningham, S. Bengtson, C.-W. Thomas, J. Liu, M. Stampanoni, and P.C.J. Donoghue. 2013. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides. Proceedings of the Royal Society B 280: 20130071. doi:10.1098/rspb.2013.0071.

    Article  Google Scholar 

  • Erwin, D.H., M. Laflamme, S.M. Tweedt, E.A. Sperling, D. Pisani, and K.J. Peterson. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334: 1091–1097.

    Article  Google Scholar 

  • Fedonkin, M.A., A. Yu, Ivantsov, M.V. Leonov, E.A. Serezhnikova. 2007. Dynamics of evolution and biodiversity in the Late Vendian: a view from the White Sea. In The rise and fall of the Vendian (Ediacaran) biota. Origin of modern biosphere. Transactions of the International Conference on the IGCP Project 493. August 20–31, 2007, Moscow, ed. M.A. Semikhatov, 6–9. Moscow: GEOS (in Russian).

  • Gehling, J.G. 1988. A cnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa 12: 299–314.

    Article  Google Scholar 

  • Gehling, J.G., G.M. Narbonne, and M.M. Anderson. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43: 427–456.

    Article  Google Scholar 

  • Gladfelter, W.B. 1972. Structure and function of the locomotory system of the Scyphomedusa Cyanea capillata. Marine Biology 14: 150–160.

    Article  Google Scholar 

  • Grazhdankin, D.V. 2000. The Ediacaran genus Inaria: a taphonomic/morphodynamic analysis. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 216: 1–34.

    Google Scholar 

  • Grazhdankin, D.V. 2003. Structure and depositional environment of the Vendian Complex in the Southeastern White Sea area. Stratigraphy and Geological Correlation 11: 313–331.

    Google Scholar 

  • Grazhdankin, D. 2004a. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30: 203–221.

    Article  Google Scholar 

  • Grazhdankin, D. 2004b. Late Neoproterozoic sedimentation in the Timan foreland. In The Neoproterozoic Timanide Orogen of Eastern Baltica, Geological Society of London, Memoir, vol. 30, eds. D.G. Gee, and V.L. Pease, 37–46.

  • Grazhdankin, D. 2014. Patterns of evolution of the Ediacaran soft-bodied biota. Journal of Paleontology 88: 269–283.

    Article  Google Scholar 

  • Grazhdankin, D., and G. Gerdes. 2007. Ediacaran microbial colonies. Lethaia 40: 201–210.

    Article  Google Scholar 

  • Grazhdankin, D.V., and A.V. Maslov. 2009. Sequence stratigraphy of the Upper Vendian of the East European Platform. Doklady Earth Sciences 426: 517–521.

    Article  Google Scholar 

  • Hagadorn, J.W., and E.S. Belt. 2008. Stranded in upstate New York: Cambrian scyphomedusae from the Potsdam Sandstone. Palaios 23: 424–441.

    Article  Google Scholar 

  • Hagadorn, J.W., R.H. Dott, and D. Damrow. 2002. Stranded on a Late Cambrian shoreline: medusae from central Wisconsin. Geology 30: 147–150.

    Article  Google Scholar 

  • Haeckel, E. 1866. Über zwei neue fossile Medusen aus der Familie der Rhizostomiden. Neues Jahrbuch für Mineralogie 1866: 257–292.

    Google Scholar 

  • Haeckel, E. 1874. Ueber eine sechszählige fossile Rhizostomee und eine vierzählige fossile Semaeostomee. Jenaer Zeitschrift für Naturwissenschaften 8: 308–330.

    Google Scholar 

  • Han, J., S. Kubota, G. Li, X. Yao, X. Yang, D. Shu, Y. Li, S. Kinoshita, O. Sasaki, T. Komiya, and G. Yan. 2013. Early Cambrian pentamerous cubozoan embryos from South China. PLoS One 8(8): e70741. doi:10.1371/journal.pone.0070741.

    Article  Google Scholar 

  • Harvey, T.H.P., and N.J. Butterfield. 2008. Sophisticated particle-feeding in a large Early Cambrian crustacean. Nature 452: 868–871.

    Article  Google Scholar 

  • Iglesia Llanos, M.P., J.A. Tait, V. Popov, and A. Abalmassova. 2005. Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the late Proterozoic—early Palaeozoic. Earth and Planetary Science Letters 240: 732–747.

    Article  Google Scholar 

  • Jensen, S., J.G. Gehling, M.L. Droser, and S.W.F. Grant. 2002. A scratch circle origin for the medusoid fossil Kullingia. Lethaia 35: 291–299.

    Article  Google Scholar 

  • Kieslinger, A. 1939. Revision der Solnhofener Medusen. Palaeontologische Zeitschrift 21: 287–296.

    Article  Google Scholar 

  • Laflamme, M., S.A.F. Darroch, S.M. Tweedt, K.J. Peterson, and D.H. Erwin. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23: 558–573.

    Article  Google Scholar 

  • Lebrato, M., J.-C. Molinero, J.E. Cartes, D. Lloris, F. Mélin, and L. Beni-Casadella. 2013. Sinking jelly-carbon unveils potential environmental variability along a continental margin. PLoS One 8: e82070. doi:10.1371/journal.pone.0082070.

    Article  Google Scholar 

  • Leich, H. 1995. Fossile Quallen aus den Solnhofener Plattenkalken. Archaeopteryx 13: 75–84.

    Google Scholar 

  • Lenton, T.M., R.A. Boyle, S.W. Poulton, G.A. Shields-Zhou, and N.J. Butterfield. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7: 257–265.

    Article  Google Scholar 

  • Liu, A.G., J.J. Matthews, L.R. Menon, D. McIlroy, and M.D. Brasier. 2014. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran Period (approx. 560 Ma). Proceedings of the Royal Society B 281: 20141202. doi:10.1098/rspb.2014.1202.

    Article  Google Scholar 

  • Maas, O. 1902. Ueber Medusen aus dem Solenhofer Schiefer und der unteren Kreide der Karpathen. Palaeontographica 48(6): 297–320.

    Google Scholar 

  • Martin, M.W., D.V. Grazhdankin, S.A. Bowring, D.A.D. Evans, M.A. Fedonkin, and J.L. Kirschvink. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for Metazoan evolution. Science 288: 841–845.

    Article  Google Scholar 

  • Maslov, A.V., D.V. Grazhdankin, V.N. Podkovyrov, YuL Ronkin, and O.P. Lepikhina. 2008. Composition of sediment provenances and patterns in geological history of the Late Vendian Mezen Basin. Lithology and Mineral Resources 43: 260–280.

    Article  Google Scholar 

  • Pauly, D., W. Graham, S. Libralato, L. Morissette, and M.L.D. Palomares. 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616: 67–85.

    Article  Google Scholar 

  • Penny, A.M., R. Wood, A. Curtis, F. Bowyer, R. Tostevin, and K.-H. Hoffman. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344: 1504–1506.

    Article  Google Scholar 

  • Pitt, K.A., M.J. Kingsford, D. Rissik, and K. Koop. 2007. Jellyfish modify the response of planktonic assemblages to nutrient pulses. Marine Ecology Progress Series 351: 1–13.

    Article  Google Scholar 

  • Polis, G.A., and D.R. Strong. 1996. Food web complexity and community dynamics. The American Naturalist 147: 813–846.

    Article  Google Scholar 

  • Rogov, V., V. Marusin, N. Bykova, Yu. Goy, K. Nagovitsin, B. Kochnev, G. Karlova, and D. Grazhdankin. 2012. The oldest evidence of bioturbation on Earth. Geology 40: 395–398.

    Article  Google Scholar 

  • Rozhnov, S.V. 1998. Results of burial experiments on the scyphomedusa Cyanea capillata L., 1758. Paleontological Journal 32: 226–228.

    Google Scholar 

  • Runnegar, B. 1991. Oxygen and the early evolution of the metazoa. In Metazoan life without oxygen, ed. C. Bryant, 65–87. London: Chapman & Hall.

    Google Scholar 

  • Savazzi, E. 2007. A new reconstruction of Protolyellia (early Cambrian psammocoral). In The rise and fall of the Ediacaran Biota. Geological Society of London Special Publication 286, ed. P. Vickers-Rich, and P. Komarower, 339–353. London: The Geological Society.

    Google Scholar 

  • Schmitz, M.D. 2012. Appendix 2—radiometric ages used in GTS2012. In The geologic time scale 2012, ed. F. Gradstein, J. Ogg, M.D. Schmitz, and G. Ogg, 1045–1082. Boston: Elsevier.

    Chapter  Google Scholar 

  • Seilacher, A. 1984. Late Precambrian and early Cambrian Metazoa: preservational or real extinctions? In Patterns of change in earth evolution, ed. H.D. Holland, and A.F. Trendall, 159–168. Berlin: Springer.

    Chapter  Google Scholar 

  • Seilacher, A. 1989. Vendozoa: organismic constructions in the Proterozoic biosphere. Lethaia 22: 229–239.

    Article  Google Scholar 

  • Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London 149: 607–613.

    Article  Google Scholar 

  • Seilacher, A. 1994. Early multicellular life: late Proterozoic fossils and the Cambrian explosion. In Early life on Earth. Nobel Symposium 84, ed. S Bengtson, 389–400. New York: Columbia University Press.

  • Seilacher, A. 2007 The nature of vendobionts. In The rise and fall of the Ediacaran Biota. Geological Society of London Special Publication 286, eds. P Vickers-Rich, P Komarower, 387–397. London: The Geological Society.

  • Seilacher, A., and R. Goldring. 1996. Class Psammocorallia (Coelenterata, Vendian–Ordovician): recognition, systematics, and distribution. GFF 118: 207–216.

    Article  Google Scholar 

  • Serezhnikova, E.A. 2005. Vendian Ediacaria from the Zimnii Bereg locality of the White Sea: new records and new reconstructions. Paleontological Journal 39: 386–394.

    Google Scholar 

  • Skikne, S.A., R.E. Sherlock, and B.H. Robison. 2009. Uptake of dissolved organic matter by ephyrae of two species of scyphomedusae. Journal of Plankton Research 31: 1563–1570.

    Article  Google Scholar 

  • Sprigg, R.C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia 71: 212–224.

    Google Scholar 

  • Sprigg, R.C. 1949. Early Cambrian ‘jellyfishes’ of Ediacara, South Australia, and Mount John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia 73: 72–99.

    Google Scholar 

  • Strong, D.R. 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754.

    Article  Google Scholar 

  • Van Iten, H., A.C. Marques, J.M. Leme, M.L.A.F. Pacheco, and M.G. Simões. 2014. Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 57: 677–690.

    Article  Google Scholar 

  • von Ammon, L. 1906. Über eine coronate Qualle (Ephyropsites jurassicus) aus dem Kalkschiefer. Geognostische Jahreshefte 19: 169–186.

    Google Scholar 

  • Yasui, K., J.D. Reimer, Y. Liu, X. Yao, D. Kubo, D. Shu, and Y. Li. 2013. A diploblastic radiate animal at the dawn of Cambrian diversification with a simple body plan: distinct from Cnidaria? PLoS One 8(6): e65890. doi:10.1371/journal.pone.0065890.

    Article  Google Scholar 

  • Young, G.A., and J.W. Hagadorn. 2010. The fossil record of cnidarian medusae. Palaeoworld 19: 212–221.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Science Foundation grant 14-17-00409. I thank the reviewers (Alex G. Liu, James W. Hagadorn, and M. Reich) for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Grazhdankin.

Additional information

Communicated by Mike Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grazhdankin, D. Forbidden fruits in the Garden of Ediacara. PalZ 90, 649–657 (2016). https://doi.org/10.1007/s12542-016-0327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-016-0327-3

Keywords

Schlüsselwörter

Navigation