Skip to main content
Log in

Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meikle PJ, Hopwood JJ (2003) Lysosomal storage disorders: emerging therapeutic options require early diagnosis. Eur J Pediatr 162:S34–S37

    Article  PubMed  Google Scholar 

  2. Wang AM, Desnick RJ (1991) Structural organization and complete sequence of the human alpha-N-acetylgalactosaminidase gene: homology with the alpha-galactosidase A gene provides evidence for evolution from a common ancestral gene. Genomics 10:133–142

    Article  CAS  PubMed  Google Scholar 

  3. Tomasic IB, Metcalf MC, Guce AI, Clark NE, Garman SC (2010) Interconversion of the specificities of human lysosomal enzymes associated with Fabry and Schindler diseases. J Biol Chem 285:21560–21566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakuraba H, Matsuzawa F, Aikawa S, Doi H, Kotani M et al (2004) Structural and immunocytochemical studies on α-N-acetylgalactosaminidase deficiency (Schindler/Kanzaki disease). J Hum Genet 49:1–8

    Article  CAS  PubMed  Google Scholar 

  5. Bakker HD, de Sonnaville MLCS, Vreken P, Abeling NGGM, Groener JE, Keulemans JL, van Diggelen OP (2001) Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy? Eur J Hum Genet EJHG 9:91–96

    Article  CAS  PubMed  Google Scholar 

  6. Katara P (2014) Single nucleotide polymorphism and its dynamics for pharmacogenomics. Interdiscip Sci Comput Life Sci 6:85–92

    Article  CAS  Google Scholar 

  7. van Diggelen OP, Schindler D, Kleijer WJ, Huijmans JM, Galjaard H et al (1987) Lysosomal alpha-N-acetylgalactosaminidase deficiency: a new inherited metabolic disease. Lancet 2:804

    Article  PubMed  Google Scholar 

  8. Schindler D, Bishop DF, Wolfe DE, Wang AM, Egge H et al (1989) Neuroaxonal dystrophy due to lysosomal alpha-N-acetylgalactosaminidase deficiency. N Engl J Med 320:1735–1740

    Article  CAS  PubMed  Google Scholar 

  9. Kodama K, Kobayashi H, Abe R, Ohkawara A, Yoshii N et al (2001) A new case of α-N-acetylgalactosaminidase deficiency with angiokeratoma corporis diffusum, with Ménière’s syndrome and without mental retardation. Br J Dermatol 144:363–368

    Article  CAS  PubMed  Google Scholar 

  10. Wang AM, Kanzaki T, Desnick RJ (1994) The molecular lesion in the alpha-N-acetylgalactosaminidase gene that causes angiokeratoma corporis diffusum with glycopeptiduria. J Clin Invest 94:839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark NE, Garman SC (2009) The 1.9 Å structure of human α-N-acetylgalactosaminidase: the molecular basis of Schindler and Kanzaki diseases. J Mol Biol 393:435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254

    Article  CAS  PubMed  Google Scholar 

  13. Wraith JE (2002) Lysosomal disorders. Semin Neonatol 7:75–83

    Article  CAS  PubMed  Google Scholar 

  14. Purohit R, Sethumadhavan R (2009) Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdiscip Sci Comput Life Sci 1:320–328

    Article  CAS  Google Scholar 

  15. Kumar A, Purohit R (2012) Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene 503:75–82

    Article  CAS  PubMed  Google Scholar 

  16. Kumar A, Purohit R (2012) Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutat Res 738–739:28–37

    Article  PubMed  CAS  Google Scholar 

  17. Rajendran V, Purohit R, Sethumadhavan R (2012) In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids 43:603–615

    Article  CAS  PubMed  Google Scholar 

  18. Rajendran V, Sethumadhavan R (2014) Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn 32:209–221

    Article  CAS  PubMed  Google Scholar 

  19. Wells SA, Crennell SJ, Danson MJ (2014) Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function. Proteins 82:2657–2670

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh M, Sodhi SS, Kim JH, Kim NE, Mongre RK et al (2015) An integrated in silico approach for the structural and functional exploration of lipocalin 2 and its functional insights with metalloproteinase 9 and lipoprotein receptor-related protein 2. Appl Biochem Biotechnol 176:712–729

    Article  CAS  PubMed  Google Scholar 

  21. Chandrasekaran P, Rajasekaran R (2014) Structural characterization of disease-causing mutations on SAP and the functional impact on the SLAM peptide: a molecular dynamics approach. Mol BioSyst 10:1869–1880

    Article  CAS  PubMed  Google Scholar 

  22. Chandrasekaran P, Rajasekaran R (2016) A systematic molecular dynamics approach to the structural characterization of amyloid aggregation propensity of β2-microglobulin mutant D76N. Mol BioSyst 12:850–859

    Article  CAS  PubMed  Google Scholar 

  23. Kokh DB, Richter S, Henrich S, Czodrowski P, Rippmann F et al (2013) TRAPP: a tool for analysis of transient binding pockets in proteins. J Chem Inf Model 53:1235–1252

    Article  CAS  PubMed  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sweeley CC, Ledonne NC, Robbins PW (1983) Post-translational processing reactions involved in the biosynthesis of lysosomal alpha-N-acetylgalactosaminidase in cultured human fibroblasts. Arch Biochem Biophys 223:158–165

    Article  CAS  PubMed  Google Scholar 

  26. Delarue M, Dumas P (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci USA 101:6957–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  28. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28:45–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boeckmann B, Blatter M-C, Famiglietti L, Hinz U, Lane L et al (2005) Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C R Biol 328:882–899

    Article  CAS  PubMed  Google Scholar 

  30. Kellogg EH, Leaver-Fay A, Baker D (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins: Struct, Funct, Bioinf 79:830–838

    Article  CAS  Google Scholar 

  31. Kruger DM, Ahmed A, Gohlke H (2012) NMSim Web Server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res 40:W310–W316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ahmed A, Rippmann F, Barnickel G, Gohlke H (2011) A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins. J Chem Inf Model 51:1604–1622

    Article  CAS  PubMed  Google Scholar 

  33. Read RJ, Adams PD, Arendall WB, Brunger AT, Emsley P et al (2011) A New Generation of Crystallographic Validation Tools for the Protein Data Bank. Structure 19:1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Liang Z, Wang W, Yi C, Zhang S et al (2014) Revealing origin of decrease in potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations. Sci Rep 4:6872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vendome J, Posy S, Jin X, Bahna F, Ahlsen G et al (2011) Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins. Nat Struct Mol Biol 18:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pedretti A, Villa L, Vistoli G (2004) VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18:167–173

    Article  CAS  PubMed  Google Scholar 

  37. Pedretti A, Villa L, Vistoli G (2002) VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs. J Mol Graph Model 21:47–49

    Article  CAS  PubMed  Google Scholar 

  38. Pedretti A, Villa L, Vistoli G (2003) Atom-type description language: a universal language to recognize atom types implemented in the VEGA program. Theor Chem Acc Theory Comput Model Theor Chim Acta 109:229–232

    CAS  Google Scholar 

  39. Hollingsworth SA, Karplus PA (2010) A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts 1:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107:1118–1124

    Article  CAS  Google Scholar 

  41. Cossio P, Granata D, Laio A, Seno F, Trovato A (2012) A simple and efficient statistical potential for scoring ensembles of protein structures. Sci Rep 2. http://www.nature.com/srep/2012/120403/srep00351/full/srep00351.html. Accessed 3 October 2014

  42. Sarti E, Zamuner S, Cossio P, Laio A, Seno F et al (2013) BACHSCORE. A tool for evaluating efficiently and reliably the quality of large sets of protein structures. Comput Phys Commun 184:2860–2865

    Article  CAS  Google Scholar 

  43. Abagyan RA (1993) Towards protein folding by global energy optimization. FEBS Lett 325:17–22

    Article  CAS  PubMed  Google Scholar 

  44. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  45. Torchala M, Moal IH, Chaleil RAG, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein–protein docking. Bioinformatics 29:807–809

    Article  CAS  PubMed  Google Scholar 

  46. Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  CAS  PubMed  Google Scholar 

  47. Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein Interactions Calculator. Nucleic Acids Res 35:W473–W476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vehlow C, Stehr H, Winkelmann M, Duarte JM, Petzold L et al (2011) CMView: interactive contact map visualization and analysis. Bioinformatics 27:1573–1574

    Article  CAS  PubMed  Google Scholar 

  49. Keating KS, Flores SC, Gerstein MB, Kuhn LA (2009) StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci Publ Protein Soc 18:359–371

    Article  CAS  Google Scholar 

  50. Porollo A, Meller J (2010) POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations. Nucleic Acids Res 38:W662–W666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  52. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Methodol 3:537–547

    Article  CAS  Google Scholar 

  54. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) Chapter 12—PubChem: integrated platform of small molecules and biological activities. In: Spellmeyer DC (ed) Annual reports in computational chemistry. Elsevier, vol. 4, pp 217–241. http://www.sciencedirect.com/science/article/pii/S1574140008000121. Accessed 31 July 2015

  55. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  56. Seeliger D, Haas J, de Groot BL (2007) Geometry-based sampling of conformational transitions in proteins. Structure 15:1482–1492

    Article  CAS  PubMed  Google Scholar 

  57. Seeliger D, De Groot BL (2009) tCONCOORD-GUI: visually supported conformational sampling of bioactive molecules. J Comput Chem 30:1160–1166

    Article  CAS  PubMed  Google Scholar 

  58. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE 10. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376797/. Accessed 29 Feb 2016

  59. Hubbard RE, Kamran Haider M (2010) Hydrogen bonds in proteins: role and strength. eLS. Accessed 4 February 2015

  60. Pace CN, Shirley BA, McNutt M, Gajiwala K (1996) Forces contributing to the conformational stability of proteins. FASEB J Off Publ Fed Am Soc Exp Biol 10:75–83

    CAS  Google Scholar 

  61. Russell RB, Barton GJ (1994) Structural features can be unconserved in proteins with similar folds. an analysis of side-chain to side-chain contacts secondary structure and accessibility. J Mol Biol 244:332–350

    Article  CAS  PubMed  Google Scholar 

  62. Elumalai P, Rajasekaran M, Liu H-L, Chen C (2010) Investigation of cation–π interactions in sugar-binding proteins. Protoplasma 247:13–24

    Article  CAS  PubMed  Google Scholar 

  63. Shirley BA (1995) Protein stability and folding: theory and practice. Humana Press, New York

    Book  Google Scholar 

  64. Chothia C, Finkelstein AV (1990) The classification and origins of protein folding patterns. Annu Rev Biochem 59:1007–1035

    Article  CAS  PubMed  Google Scholar 

  65. 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  Google Scholar 

  66. Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants. BMC Genom 14(Suppl 3):S2

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the management of VIT University for providing the facilities and encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajasekaran.

Ethics declarations

Conflict of interest

We have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshach Paul, D., Rajasekaran, R. Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA. Interdiscip Sci Comput Life Sci 10, 81–92 (2018). https://doi.org/10.1007/s12539-016-0173-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0173-8

Keywords

Navigation