Skip to main content

Advertisement

Log in

Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences

Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benveniste, J., Jurgens, P., Aïssa, J. 1996. Digital recording/ transmission of the cholinergic signal. Faseb Journal 10, A1479.

    Google Scholar 

  2. Benveniste, J., Guillonnet, D. 2003. Method, system and device for producing signals from a substance biological and/or chemical activity. US Patent N° 6 541, 978 B1.

    Google Scholar 

  3. Cowan, M.L., Bruner, B.D., Huse, N., Dwyer, J.R., Chugh, B., Nibbering, E.T., Elsaesser, T., Miller, R.J. 2005. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202.

    Article  CAS  PubMed  Google Scholar 

  4. David, J. 1998. Introduction to Magnetism and Magnetic Materials. CRC Press. 354.

  5. Del Guidice, E., Preparata, G., Vitielo, G. 1988. Water as a free electric dipole laser. Physical Review Letters 61, 1085–1088.

    Article  Google Scholar 

  6. Grau, O., Kovacic, R., Griffais, R., Montagnier, L. 1993. Development of a selective and sensitive polymerase chain reaction assay for the detection of Mycoplasma pirum. FEMS Microbiology Letters 106, 327–334.

    Article  CAS  PubMed  Google Scholar 

  7. Ruan, C.Y., Lobastov, V.A., Vigliotti, F., Chen, S., Zewall, A.H. 2004. Ultrafast electron crystallography of interfacial water. Science 304, 80–84.

    Article  CAS  PubMed  Google Scholar 

  8. Tham, T.N., Ferris, S., Bahraoui, E., Canarelli, S., Montagnier, L., Blanchard, A. 1994. Molecular characterization of the P1-like adhesin gene from Mycoplasma pirum. Journal of Bacteriology, 781–788.

  9. Tully, J.G., Whitcomb, R.G., Clark, H.F., Williamson, D.L. 1977. Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195, 892–894.

    Article  CAS  PubMed  Google Scholar 

  10. Wernet, P., Nordlund, D., Bergmann, U., Cavalleri, M., Odelius, M., Ogasawara, H., Näslund, L.A., Hirsch, T.K., Ojamäe, L., Glatzel, P., Pettersson, L.G., Nilsson, A. 2004. The structure of the first coordination shell in liquid water. Science 304, 995–999.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Montagnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montagnier, L., Aïssa, J., Ferris, S. et al. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci Comput Life Sci 1, 81–90 (2009). https://doi.org/10.1007/s12539-009-0036-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-009-0036-7

Key words

Navigation