Skip to main content
Log in

A peptide-linkage deletion procedure for estimate of energetic contributions of individual peptide groups in a complex environment: Application to parallel β-Sheets

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

A peptide-linkage deletion procedure is introduced for extracting the quantum mechanical (QM) interaction energies of individual groups in a complex environment and applied for the determination of the energetic contributions of the individual hydrogen bond acceptors (C=O’s) and donors (N-H’s) in parallel β-sheets. For the β-sheets studied here, the results show that the contributions from the H-bond acceptors (C=O) can be significantly greater than the contributions from the donors (N-H). It is suggested that this imbalance may be induced, at least in part, by the inter-strand Cα-H⋯O=C interactions which may play an important role in stabilizing β-sheets. The results demonstrate the usefulness of the approach proposed in this paper to study interactions in complex protein environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, E.N., Hubbard, R.E 1984. Hydrogen-bonding in globular-proteins. Prog Biophys Mol Biol 44, 97–179.

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin, R.L 2003. In search of the energetic role of peptide hydrogen bonds. J Biol Chem 278, 17581–17588.

    Article  PubMed  CAS  Google Scholar 

  3. Baudry, J., Smith, J.C 1994. Molecular mechanics analysis of peptide group hydrogen-bonding cooperativity and influence on phi and psi rotational barriers. J Mol Struct (Theochem) 114, 103–113.

    Article  CAS  Google Scholar 

  4. Ben-Tal, N., Sitkoff, D., Topol, I.A., Yang, A.S., Burt S.K., Honig, B.J 1997. Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution. J Phys Chem B 101, 450–457.

    Article  CAS  Google Scholar 

  5. Boys, S.F., Bernardi, F 1970. Calculation of small molecular interactions by differences of separate total energies - some procedures with reduced errors. Mol Phys 19, 553–566.

    Article  CAS  Google Scholar 

  6. Buck, M 1998. Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys 31, 297–355.

    Article  PubMed  CAS  Google Scholar 

  7. Buck, M., Karplus, M 2001. Hydrogen bond energetics: A simulation and statistical analysis of N-methyl acetamide (NMA), water, and human lysozyme. J Phys Chem B 105, 11000–11015.

    Article  CAS  Google Scholar 

  8. Cui, Q., Guo, H., Karplus, M 2002. Combining ab initio and density functional theories with semiempirical methods. J Chem Phys 117, 5617–5631.

    Article  CAS  Google Scholar 

  9. Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K., Frisch, M.J 1999. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct (Theochem) 461–462, 1–21.

    Article  Google Scholar 

  10. Deechongkit, S., Nguyen, H., Powers, E.T., Dawson, P.E., Gruebele, M., Kelly, J.W 2004. Contextdependent contributions of backbone hydrogen bonding to beta-sheet folding energetics. Nature 430, 101–105.

    Article  PubMed  CAS  Google Scholar 

  11. Derewenda, Z.S., Lee, L., Derewenda, U 1995. The occurrence of C-H...O hydrogen-bonds in proteins. J Mol Biol 252, 248–262.

    Article  PubMed  CAS  Google Scholar 

  12. Dill, K.A 1990. Dominant forces in protein folding. Biochemistry 29, 7133–7155.

    Article  PubMed  CAS  Google Scholar 

  13. Dixon, D.A., Dobbs, K.D., Valentini, J.J 1994. Amide-water and amide-amide hydrogen-bond strengths. J Phys Chem 98, 13435–13439.

    Article  CAS  Google Scholar 

  14. Doig, A.J., Willianms, D.H 1992. Binding-energy of an amide amide hydrogen-bond in aqueous and nonpolar-solvents. J Am Chem Soc 114, 338–343.

    Article  CAS  Google Scholar 

  15. Eberhardt, E.S., Raines, R.T 1994. Amide-amide and amide-water hydrogen bond - Implications for protein folding and stability. J Am Chem Soc 116, 2149–2150.

    Article  CAS  Google Scholar 

  16. Fabiola, G.F., Krishnaswamy, S., Nagarajan, V., Pattanhi, V 1997. C-H...O hydrogen bonds in beta-sheets. Acta Cryst D53, 316–320.

    CAS  Google Scholar 

  17. Fersht, A.R 1987. The hydrogen-bond in molecular recognition. Trends Biochem Sci 12, 301–304.

    Article  CAS  Google Scholar 

  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.Jr., Vreven, T., Kudin, K.N., Pople, J.A 2004. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT.

    Google Scholar 

  19. Gresh, N., Kafafi, S.A., Truchon, J.-F., Salahub, D.R 2004. Intramolecular interaction energies in model alanine and glycine tetrapeptides. Evaluation of anisotropy, polarization, and correlation effects. A parallel ab initio HF/MP2, DFT, and polarizable molecular mechanics study. J Comput Chem 25, 823–834.

    Article  PubMed  CAS  Google Scholar 

  20. Guo, H.B., Beahm, R.F., Guo, H 2004. Stabilization and destabilization of the C-H...O=C hydrogen bonds involving proline residues in helices. J Phys Chem B 108, 18065–18072.

    Article  CAS  Google Scholar 

  21. Guo, H., Gresh, N., Roques, B.P. Salahub, D.R 2000. Many-body effects in systems of peptide hydrogenbonded networks and their contributions to ligand binding: A comparison of the performances of DFT and polarizable molecular mechanics. J Phys Chem B 104, 9746–9754.

    Article  CAS  Google Scholar 

  22. Guo, H., Karplus, M 1992. Ab initio studies of hydrogen-bonding of N-methylacetamide - Structure, cooperativity, and internal rotational barriers. J Phys Chem 96, 7273–7287.

    Article  CAS  Google Scholar 

  23. Han, W.G., Suhai, S 1996. Density functional studies on N-methylacetamide water complexes. J Phys Chem 1996, 100, 3942–3949.

    Article  CAS  Google Scholar 

  24. Jeffrey, G.A., Saenger, W 1991. Hydrogen bonding in biological structures. John Wiley and Sons.

  25. Koh, J.T., Cornish, V.W., Schultz, P.G 1997. An experimental approach to evaluating the role of backbone interactions in proteins using unnatural amino acid mutagenesis. Biochemistry 36, 11314–11322.

    Article  PubMed  CAS  Google Scholar 

  26. Lazaridis, T., Archontis, G., Karplus, M 1995. Enthalpic contribution to protein stability: Insights from atom-based calculations and statistical mechanics. Adv Protein Chem 47, 231–306.

    Article  PubMed  CAS  Google Scholar 

  27. MacKerell, A.D.Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Evansek, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., et al., and Karplus, M 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102, 3586–3616.

    Article  CAS  Google Scholar 

  28. Makhatadze, G.I., Privalov, P.L 1995. Energetics of protein structure. Adv Protein Chem 47, 307–425.

    Article  PubMed  CAS  Google Scholar 

  29. Markham, L.M., Hudson, B.S 1996. Ab initio analysis of the effects of aqueous solvation on the resonance Raman intensities of N-methylacetamide. J Phys Chem 100, 2731–2737.

    Article  CAS  Google Scholar 

  30. Parra, R.D., Bulusu, S., Zeng, X.C 2005. Cooperative effects in two-dimensional ring-like networks of threecenter hydrogen bonding interactions. J Chem Phys 122, 184325.

    Article  PubMed  CAS  Google Scholar 

  31. Rose, G.D., Wolfenden, R 1993. Hydrogen-bonding, hydrophobicity, packing, and protein-folding. Annu Rev Biophys Biomol Struct 22, 381–413.

    Article  PubMed  CAS  Google Scholar 

  32. Rossmeisl, J., Norskov, J.K., Jacobsen, K.W 2004. Elastic effects behind cooperative bonding in betasheets. J Am Chem Soc 126, 13140–13143.

    Article  PubMed  CAS  Google Scholar 

  33. Schellman, J.A 1955. The stability of hydrogenbonded peptide structures in aqueous solution. C R Trav Lab Carlsberg Ser Chim 29, 230–259.

    CAS  Google Scholar 

  34. Sheu, S.Y., Yang, D.Y., Selzle, H.L., Schlag, E.W 2003. Energetics of hydrogen bonds in peptides. Proc Natl Acad Sci USA 100, 12683–12687.

    Article  PubMed  CAS  Google Scholar 

  35. Stickle, D.F., Presta, L.G., Dill K.A., Rose G.D 1992. Hydrogen-bonding in globular-proteins. J Mol Biol 226, 1143–1159.

    Article  PubMed  CAS  Google Scholar 

  36. Viswanathan, R., Asensio, A., Dannenberg, J.J 2004. Cooperative hydrogen-bonding in models of antiparallel beta-sheets. J Phys Chem A 108, 9205–9212.

    Article  CAS  Google Scholar 

  37. Wlodawer, A., Li, M., Gustchina, A., Dauter, Z., Uchida, K., Oyama, H., Goldfarb, N.E., Dunn, B.M., Oda, K 2001. Inhibitor complexes of the Pseudomonas serine-carboxyl proteinase. Biochemistry 40, 15602–15611.

    Article  PubMed  CAS  Google Scholar 

  38. MOE, Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montreal, Quebec, Canada H3A 2R7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Gorin, A. & Guo, H. A peptide-linkage deletion procedure for estimate of energetic contributions of individual peptide groups in a complex environment: Application to parallel β-Sheets. Interdiscip Sci Comput Life Sci 1, 12–20 (2009). https://doi.org/10.1007/s12539-008-0011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-008-0011-8

Key words

Navigation