Skip to main content
Log in

Impact of uncertainty in remote sensing DEMs on topographic amplification of seismic response and Vs 30

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Impact of topography on spatial variation of seismic response is well-observed synthetically, experimentally, and visually during seismic events. Numerical and experimental investigations for predicting topographic impact on seismic response are often limited to isolated and/or synthetic hills and ridges. Furthermore, most of these studies only focus on one of the many terrain parameters necessary for evaluating the impact of topographic features on amplification or de-amplification of seismic response. Seismic events located in rough terrain, like the 2005 Kashmir earthquake in northern Pakistan, exhibit intensified seismic response and associated devastation at hill ridges and on inclined slopes. Satellite remote sensing-derived digital elevation models (DEMs) are frequently and effectively used to compute topographic attributes and seismic parameters to evaluate topographic seismic response. However, the influence of DEM random errors on computed topographic attributes and seismic response is often overlooked. This study uses the Shuttle Radar Topography Mission (SRTM) DEM (90 m) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM (30 m) to quantify uncertainties in the computed topographic attributes and seismic parameters and ultimately the impact of these uncertainties on topographic seismic response. Accuracy assessment of the DEMs shows root mean square error (RMSE) of 13.78 m in the ASTER DEM and 23.71 m in the SRTM DEM. The influence of DEM errors on derived topographic attributes quantified through Monte Carlo simulations shows higher uncertainty in slope and aspect computed from ASTER DEM than from SRTM DEM. The influence of uncertainty in the SRTM and ASTER DEMs shows significant impact on the computed seismic parameters of slope, relative height, and V s 30 and ultimately derived topographic seismic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams M (2000) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. Int J Remote Sens 21(5):847–859

    Article  Google Scholar 

  • ADB, WB (2005) Preliminary damage and needs assessment. Asian Development Bank and World Bank, Islamabad

    Google Scholar 

  • Allen TI, Wald DJ (2009) On the use of high-resolution topographic data as a proxy for seismic site conditions (V S 30). B Seismol Soc Am 99(2A):935–943

    Article  Google Scholar 

  • Arnous M (2013) Geotechnical site investigations for possible urban extensions at Suez City, Egypt using GIS. Arab J Geosci 6(5):1349–1369

    Article  Google Scholar 

  • Ashford SA, Sitar N (1997) Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. B Seismol Soc Am 87(3):692–700

    Google Scholar 

  • Ashford SA, Sitar N, Lysmer J, Deng N (1997) Topographic effects on the seismic response of steep slopes. B Seismol Soc Am 87(3):701–709

    Google Scholar 

  • Assimaki D, Gazetas G (2004) Soil and topographic amplification on canyon banks and the 1999 Athens earthquake. J Earthq Eng, Imp Coll Press 8(1):1–43

    Google Scholar 

  • Assimaki D, Jeong S (2013) Ground-motion observations at Hotel Montana during the m 7.0 2010 Haiti earthquake; topography or soil amplification? B Seismol Soc Am 103(5):2577–2590

    Article  Google Scholar 

  • Athanasopoulos GA, Pelekis PC, Leonidou EA (1999) Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dyn Earthq Eng 18(2):135–149

    Article  Google Scholar 

  • Berry PAM, Garlick JD, Smith RG (2007) Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sens Environ 106(1):17–27

    Article  Google Scholar 

  • Boore DM (2004) Estimating Vs(30) (or NEHRP Site Classes) from shallow velocity models (Depths < 30 m). B Seismol Soc Am 94(2):591–597

    Article  Google Scholar 

  • Bouchon M, Barker JS (1996) Seismic response of a hill: the example of Tarzana, California. B Seismol Soc Am 86(1A):66–72

    Google Scholar 

  • Bouckovalas G, Papadimitriou AG (2006) Aggravation of seismic ground motion due to slope topography. First European Conference on Earthquake Engineering and Seismology, Geneva-Switzerland, In, pp 1–10

    Google Scholar 

  • Bouckovalas GD, Papadimitriou AG (2005) Numerical evaluation of slope topography effects on seismic ground motion. Soil Dyn Earthq Eng 25(7–10):547–558

    Article  Google Scholar 

  • Carter JR (1992) The effect of data precision on the calculation of slope and aspect using gridded DEMs. Cartographica 29(1):22–34

    Article  Google Scholar 

  • CGIAR-CSI (2004) SRTM 90 m Digital Elevation Data http://srtm.csi.cgiar.org/. Accessed 12 Aug 2007

  • Chen C, Yue T (2010) A method of DEM construction and related error analysis. Comput Geosci 36(6):717–725

    Article  Google Scholar 

  • ERSDAC (2009) ASTER Global Digital Elevation Model (G-DEM). http://www.ersdac.or.jp/GDEM/E/index.html. Accessed 15 February 2010

  • Fandi M, Alyazjeen T (2013) Evaluation of site amplification, structural dynamic characteristics, and structural vulnerability rating of the city of Aqaba. Arab J Geosci 6(5):1465–1478

    Article  Google Scholar 

  • Florinsky IV (1998) Accuracy of local topographic variables derived from digital elevation models. Int J Geogr Inf Sci 12(1):47–61

    Article  Google Scholar 

  • Geymen A (2012) Digital elevation model (DEM) generation using the SAR interferometry technique. Arab J Geosci:1–11

  • Gopinath G, Swetha TV, Ashitha MK (2013) Automated extraction of watershed boundary and drainage network from SRTM and comparison with Survey of India toposheet. Arab J Geosci:1–8

  • Gorokhovich Y, Voustianiouk A (2006) Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens Environ 104(4):409–415

    Article  Google Scholar 

  • Graizer V (2009) Low-velocity zone and topography as a source of site amplification effect on Tarzana hill, California. Soil Dyn Earthq Eng 29(2):324–332

    Article  Google Scholar 

  • Heipke C (1995) State-of-the-art of digital photogrammetric workstations for topographic applications. Photogramm Eng Rem S 61(1):49–56

    Google Scholar 

  • Hough SE, Altidor JR, Anglade D, Given D, Janvier MG, Maharrey JZ, Meremonte M, Mildor BS-L, Prepetit C, Yong A (2010) Localized damage caused by topographic amplification during the 2010 M 7.0 Haiti earthquake. Nat Geosci 3:778–782

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall international series in civil engineering and engineering mechanics. Prentice Hall International Series, New Jersey

    Google Scholar 

  • Lanter D, Veregin H (1992) A research based paradigm for propagating error in layer-based GIS. Photogramm Eng Rem S 58(6):825–833

    Google Scholar 

  • Lee S-J, Chan Y-C, Komatitsch D, Huang B-S, Tromp J (2009a) Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the Spectral-Element Method and LiDAR DTM. B Seismol Soc Am 99(2A):681–693

    Article  Google Scholar 

  • Lee S-J, Komatitsch D, Huang B-S, Tromp J (2009b) Effects of topography on seismic-wave propagation: an example from northern Taiwan. B Seismol Soc Am 99(1):314–325

    Article  Google Scholar 

  • Liu H, Xua Q, Lib Y, Fan X (2013) Response of high-strength rock slope to seismic waves in a shaking table test B. Seismol Soc Am 103:3012–3025

    Article  Google Scholar 

  • Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sc Lett 275(3–4):221–232

    Article  Google Scholar 

  • Nave R (2000) Traveling wave relationship. http://hyperphysics.phy-astr.gsu.edu/hbase/wavrel.html.

  • Nguyen K-V, Gatmiri B (2007) Evaluation of seismic ground motion induced by topographic irregularity. Soil Dyn Earthq Eng 27(2):183–188

    Article  Google Scholar 

  • Nikolakopoulos KG, Kamaratakis EK, Chrysoulakis N (2006) SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int J Remote Sens 27(21):4819–4838

    Article  Google Scholar 

  • Oksanen J, Sarjakoski T (2005) Error propagation of DEM-based surface derivatives. Comput Geosci 31(8):1015–1027

    Article  Google Scholar 

  • Pedersen HA, Sanchez-Sesma FJ, CampiIlo M (1994) Three-dimensional scattering by two-dimensional topographies. B Seismol Soc Am 84(4):1169–1183

    Google Scholar 

  • Pradhan B, Youssef A (2010) Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3(3):319–326

    Article  Google Scholar 

  • Rodríguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance. Photogramm Eng Rem S 72(3):249–260

    Article  Google Scholar 

  • Shafique M, van der Meijde M, Kerle N, van der Meer F (2011a) Impact of DEM source and resolution on topographic seismic amplification. Int J Appl Earth Obs Geoinformation 13(3):420–427

    Article  Google Scholar 

  • Shafique M, van der Meijde M, Kerle N, van der Meer F, Khan MA (2008) Predicting topographic aggravation of seismic ground shaking by applying geospatial tools. J Himal Earth Sci 41:33–43

    Google Scholar 

  • Shafique M, van der Meijde M, Ullah S (2011b) Regolith modeling and its relation to earthquake induced building damage: a remote sensing approach. J Asian Earth Sci 42(1–2):65–75

    Article  Google Scholar 

  • Shafique M, van der Meijde M, van der Werff HMA (2012) Evaluation of remote sensing-based seismic site characterization using earthquake damage data. Terra Nova 24(2):123–129

    Article  Google Scholar 

  • Sindayihebura A, Meirvenne MV, Nsabimana S (2006) Comparison of methods for deriving a digital elevation model from contours and modelling of the associated uncertainty. In: Caetano M, Painho M (eds) 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Lisbon, Portugal

    Google Scholar 

  • Stamatopoulos CA, Bassanou M, Brennan AJ, Madabhushi G (2007) Mitigation of the seismic motion near the edge of cliff-type topographies. Soil Dyn Earthq Eng 27(12):1082–1100

    Article  Google Scholar 

  • Tachikawa T, Kaku M, Iwasaki A, Gesch D, Oimoen M, Zhang Z, Danielson J, Krieger T, Curtis B, Haase J, Abrams M, Crippen R, Carabajal C (2011) ASTER Global Digital Elevation Model Version 2—summary of validation results.

  • Vaze J, Teng J, Spencer G (2010) Impact of DEM accuracy and resolution on topographic indices. Environ Model Softw 25(10):1086–1098

    Article  Google Scholar 

  • Wald DJ, Allen TI (2007) Topographic slope as a proxy for seismic site conditions and amplification. B Seismol Soc Am 97(5):1379–1395

    Article  Google Scholar 

  • Wechsler SP (2003) Perceptions of digital elevation model uncertainty by DEM users. Urban Reg Inf Syst Assoc J 15(2):57–64

    Google Scholar 

  • Wechsler SP, Kroll CN (2006) Quantifying DEM uncertainty and its effect on topographic parameters. Photogramm Eng Rem S 72(9):1081–1090

    Article  Google Scholar 

  • Weydahl DJ, Sagstuen J, Dick ØB, Ronning H (2007) SRTM DEM accuracy assessment over vegetated areas in Norway. Int J Remote Sens 26(16):1–15

    Google Scholar 

  • Wills CJ, Clahan KB (2006) Developing a map of geologically defined site-condition categories for California. B Seismol Soc Am 96(4A):1483–1501

    Article  Google Scholar 

  • Wise SM (2007) Effect of differing DEM creation methods on the results from a hydrological model. Comput Geosci 33(10):1351–1365

    Article  Google Scholar 

  • Zhou Q, Liu X (2004) Analysis of errors of derived slope and aspect related to DEM data properties. Comput Geosci 30:369–378

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Higher Education Commission (HEC) of Pakistan for financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shafique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafique, M., van der Meijde, M. Impact of uncertainty in remote sensing DEMs on topographic amplification of seismic response and Vs 30 . Arab J Geosci 8, 2237–2245 (2015). https://doi.org/10.1007/s12517-014-1351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1351-9

Keywords

Navigation