Skip to main content
Log in

Grounding the Interaction: Anchoring Situated Discourse in Everyday Human-Robot Interaction

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

This paper presents how extraction, representation and use of symbolic knowledge from real-world perception and human-robot verbal and non-verbal interaction can actually enable a grounded and shared model of the world that is suitable for later high-level tasks such as dialogue understanding. We show how the anchoring process itself relies on the situated nature of human-robot interactions. We present an integrated approach, including a specialized symbolic knowledge representation system based on Description Logics, and case studies on several robotic platforms that demonstrate these cognitive capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alami R, Chatila R, Fleury S, Ghallab M, Ingrand F (1998) An architecture for autonomy. Int J Robot Res 17(4):315

    Article  Google Scholar 

  2. Austin J, Urmson J, Sbisà M (1962) How to do things with words. Harvard University Press, Harvard

    Google Scholar 

  3. Baerlocher P, Boulic R (2004) An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Vis Comput Int J Comput Graph 20(6):402–417

    Google Scholar 

  4. Beetz M, Mösenlechner L, Tenorth M (2010) CRAM—a cognitive robot abstract machine for everyday manipulation in human environments. In: IEEE/RSJ international conference on intelligent robots and systems

    Google Scholar 

  5. Blisard SN (2005) Modeling spatial referencing language for human-robot interaction. In: Proc IEEE intl workshop on robot and human interactive communication, pp 698–703

    Chapter  Google Scholar 

  6. Brick T, Scheutz M (2007) Incremental natural language processing for HRI. In: Proceedings of the ACM/IEEE international conference on human-robot interaction

    Google Scholar 

  7. Coradeschi S, Saffiotti A (2003) An introduction to the anchoring problem. Robot Auton Syst 43(2–3):85–96

    Article  Google Scholar 

  8. Dale R, Reiter E (1995) Computational interpretations of the Gricean maxims in the generation of referring expressions. Cogn Sci 19(2):233–263

    Article  Google Scholar 

  9. Daoutis M, Coradeshi S, Loutfi A (2009) Grounding commonsense knowledge in intelligent systems. J Ambient Intell Smart Environ:311–321

  10. Flavell JH (1992) Perspectives on perspective taking. Lawrence Erlbaum Associates, pp 107–139

    Google Scholar 

  11. Gruber J (1965) Studies in lexical relations. PhD thesis, Massachusetts Institute of Technology

  12. Gunderson J, Gunderson L (2008) Robots, reasoning, and reification. Springer, Berlin

    Google Scholar 

  13. Gutiérrez JPM (2001) Directed motion in English and Spanish, vol 11. Universidad de Sevilla, chap Semantic Role Lists

  14. Harnad S (1990) The symbol grounding problem. Physica D 42(1–3):335–346

    Article  Google Scholar 

  15. Hawes N, Hanheide M, Hargreaves J, Page B, Zender H, Jensfelt P (2011) Home alone: autonomous extension and correction of spatial representations. In: Proceedings of the international conference on robotics and automation

    Google Scholar 

  16. Huwel S, Wrede B, Sagerer G (2006) Robust speech understanding for multi-modal human-robot communication. In: The 15th IEEE international symposium on robot and human interactive communication

    Google Scholar 

  17. Jain D, Mösenlechner L, Beetz M (2009) Equipping robot control programs with first-order probabilistic reasoning capabilities. In: International conference on robotics and automation (ICRA)

    Google Scholar 

  18. Kelleher JD, Costello FJ (2009) Applying computational models of spatial prepositions to visually situated dialog. Comput Linguist 35:271–306

    Article  Google Scholar 

  19. Kipper K, Korhonen A, Ryant N, Palmer M (2008) A large-scale classification of English verbs. Lang Resour Eval 42(1):21–40

    Article  Google Scholar 

  20. Kruijff G, Lison P, Benjamin T, Jacobsson H, Zender H, Kruijff-Korbayová I, Hawes N (2010) Situated dialogue processing for human-robot interaction. In: Cognitive Systems, pp 311–364

    Chapter  Google Scholar 

  21. Lemaignan S, Ros R, Mösenlechner L, Alami R, Beetz M (2010) ORO, a knowledge management platform for cognitive architectures in robotics. In: IEEE/RSJ international conference on intelligent robots and systems

    Google Scholar 

  22. Leslie A (2000) Theory of mind as a mechanism of selective attention. In: The new cognitive neurosciences, pp 1235–1247

    Google Scholar 

  23. Matuszek C, Fox D, Koscher K (2010) Following directions using statistical machine translation. In: Proc of int’l conf on human-robot interaction. ACM Press, New York

    Google Scholar 

  24. Mavridis N, Roy D (2005) Grounded situation models for robots: bridging language, perception, and action. In: AAAI-05 workshop on modular construction of human-like intelligence

    Google Scholar 

  25. Moll H, Tomasello M (2006) Level 1 perspective-taking at 24 months of age. Br J Dev Psychol 24(3):603–614

    Article  Google Scholar 

  26. Nakamura Y (1990) Advanced robotics: redundancy and optimization. Addison-Wesley/Longman, Boston

    Google Scholar 

  27. O’Keefe J (1999) The spatial prepositions. MIT Press, New York

    Google Scholar 

  28. Regier T, Carlson L (2001) Grounding spatial language in perception: an empirical and computational investigation. J Exp Psychol

  29. Ros R, Lemaignan S, Sisbot EA, Alami R, Steinwender J, Hamann K, Warneken F (2010) Which one? Grounding the referent based on efficient human-robot interaction. In: 19th IEEE international symposium in robot and human interactive communication

    Google Scholar 

  30. Ros R, Sisbot EA, Lemaignan S, Pandey A, Alami R (2010) Robot, tell me what you know about …?: Expressing robot’s knowledge through interaction. In: Proceedings of the ICRA workshop on interactive communication for autonomous intelligent robots (ICAIR), pp 26–29

    Google Scholar 

  31. Roy D, Reiter E (2005) Connecting language to the world. Artif Intell

  32. Scassellati B (2002) Theory of mind for a humanoid robot. Auton Robots 12(1):13–24

    Article  MATH  Google Scholar 

  33. Searle JR (1976) A classification of illocutionary acts. Lang Soc 5(01):1–23

    Article  Google Scholar 

  34. Searle JR (1980) Minds, brains, and programs. Behav Brain Sci 3:417–424

    Article  Google Scholar 

  35. Shapiro S, Bona J (2009) The GLAIR cognitive architecture. In: AAAI fall symposium series

    Google Scholar 

  36. Sisbot E, Ros R, Alami R (2011) Situation assessment for human-robot interaction. In: 20th IEEE international symposium in robot and human interactive communication

    Google Scholar 

  37. Sloman A (2007) Why symbol-grounding is both impossible and unnecessary, and why theory-tethering is more powerful anyway. Tech rep, Research Note No COSY-PR-0705

  38. Sloman A (2009) Some requirements for human-like robots: why the recent over-emphasis on embodiment has held up progress. Creating Brain-like Intelligence, pp 248–277

  39. Steels L (2007) The symbol grounding problem has been solved. So what’s next? In: Symbols, embodiment and meaning. Oxford University Press, Oxford

    Google Scholar 

  40. Suh I, Lim G, Hwang W, Suh H, Choi J, Park Y (2007) Ontology-based multi-layered robot knowledge framework (omrkf) for robot intelligence. In: IEEE/RSJ international conference on intelligent robots and systems

    Google Scholar 

  41. Tenorth M, Beetz M (2009) KnowRob—knowledge processing for autonomous personal robots. In: IEEE/RSJ international conference on intelligent robots and systems

    Google Scholar 

  42. Tversky B, Lee P, Mainwaring S (1999) Why do speakers mix perspectives? Spatial Cogn Comput 1(4):399–412

    Article  Google Scholar 

  43. Vrecko A, Skocaj D, Hawes N, Leonardis A (2009) A computer vision integration model for a multi-modal cognitive system. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, New York, pp 3140–3147

    Google Scholar 

  44. Zender H, Kruijff G, Kruijff-Korbayová I (2009) Situated resolution and generation of spatial referring expressions for robotic assistants. In: Proceedings of the twenty-first international joint conference on artificial intelligence, pp 1604–1609

    Google Scholar 

  45. Ziemke T (1999) Rethinking grounding. In: Understanding representation in the cognitive sciences, pp 177–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverin Lemaignan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemaignan, S., Ros, R., Sisbot, E.A. et al. Grounding the Interaction: Anchoring Situated Discourse in Everyday Human-Robot Interaction. Int J of Soc Robotics 4, 181–199 (2012). https://doi.org/10.1007/s12369-011-0123-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-011-0123-x

Keywords

Navigation