Skip to main content
Log in

A Dichotomy in Area-Preserving Reversible Maps

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we study R-reversible area-preserving maps \(f:M\rightarrow M\) on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that \(R\circ f=f^{-1}\circ R\) where \(R:M\rightarrow M\) is an isometric involution. We obtain a \(C^1\)-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the \(C^1\)-Closing Lemma for reversible maps and other perturbation toolboxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anosov, D.V., Zhuzhoma, E.V.: Closing lemmas. Differ. Equs. 48(13), 1653–1699 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbieto, A., Matheus, C.: A pasting lemma and some applications for conservative systems. With an appendix by David Diica and Yakov Simpson-Weller. Ergodic Theory Dyn. Syst. 27, 1399–1417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessa, M., Duarte, P.: Abundance of elliptic dynamics on conservative \(3\)-flows. Dyn. Syst. Int. J. 23(4), 409–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessa, M., Carvalho, M., Rodrigues, A.: Generic area-preserving reversible diffeomorphisms. Nonlinearity 28, 1695–1720 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessa, M., Carvalho, M., Rodrigues, A.: Linear reversible Anosov diffeomorphisms on the two-torus. https://cmup.fc.up.pt/main/preprints (2015)

  6. Birkhoff, G.D.: The restricted problem of three bodies. Rend. Circ. Mat. Palermo 39, 265–334 (1915)

    Article  MATH  Google Scholar 

  7. Bochi, J.: Genericity of zero Lyapunov exponents. Ergodic Theory Dyn. Syst. 22, 1667–1696 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bochi, J., Viana, M.: Lyapunov Exponents: How Frequently are Dynamical System Hyperbolic? Modern Dynamical Systems and applications, 217–297. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  9. Bonatti, C., Crovisier, S.: Récurrence et généricité. Invent. Math. 158(1), 33–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonatti, C., Díaz, L.J., Pujals, E.: A \(C^1\)-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. 158, 355–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonatti, C., Gourmelon, N., Vivier, T.: Perturbations of the derivative along periodic orbits. Ergodic Theory Dyn. Syst. 26(5), 1307–1337 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Field, M., Melbourne, I., Nicol, M.: Symmetric attractors for diffeomorphisms and flows. Proc. Lond. Math. Soc. 72, 657–669 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franks, J.: Necessary conditions for the stability of diffeomorphisms. Trans. Am. Math. Soc. 158, 301–308 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franks, J.: Anosov diffeomorphisms, global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif.). Amer. Math. Soc., Providence, R.I. 1070, pp. 61–93 (1968)

  15. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, Berlin (2000)

    MATH  Google Scholar 

  16. Hurewicz, W., Wallman, H.: Dimension Theory, Princeton Mathematical Series, vol. 4. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  17. Kumicak, J., de Hemptinne, X.: The dynamics of thermodynamics. Physica D 112, 258–274 (1988)

    Article  MathSciNet  Google Scholar 

  18. Lamb, J., Roberts, J.: Time-reversal symmetry in dynamical systems: a survey. Physica D 112, 1–39 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamb, J., Stenkin, O.: Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits. Nonlinearity 17, 1217–1244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meiss, J.D.: Symplectic maps, variational principles, and transport. Rev. Modern Phys. 64(3), 795–848 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moser, J., Zehnder, E.: Notes on Dynamical Systems, Courant Lecture Notes in Mathematics, 12, New York University, Courant Institute of Mathematical Sciences. American Mathematical Society, Providence (2005)

    Google Scholar 

  22. Newhouse, S.: Quasi-elliptic periodic points in conservative dynamical systems. Am. J. Math. 99, 1061–1087 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prigogine, I.: Why irreversibility? The formulation of classical and quantum mechanics for nonintegrable systems. Int. J. Bifur. Chaos Appl. Sci. Eng 5(1), 3–16 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pugh, C.: The closing lemma. Am. J. Math. 89(4), 956–1009 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pugh, C.: An improved closing lemma and a general density theorem. Am. J. Math. 89(4), 1010–1021 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pugh, C., Robinson, C.: The \(C^1\) closing lemma, including hamiltonians. Ergodic Theory Dyn. Syst. 3, 261–313 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pujals, H., Sambarino, M.: On the dynamics of dominated splitting. Ann. Math. 169(3), 675–740 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roberts, J.A.G., Quispel, G.R.W.: Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep. 216, 63–177 (1992)

    Article  MathSciNet  Google Scholar 

  29. Webster, K.: Bifurcations in reversible systems with application to the Michelson system, PhD. Thesis, Imperial College of London (2005)

  30. Zehnder, E.: Homoclinic points near elliptic fixed points. Comun. Pure Appl. Math. 26, 131–182 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zehnder, E.: Note on smoothing symplectic and volume-preserving diffeomorphisms. In: Proceedings of III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976, volume 597 Lecture Notes in Math, pp. 828–854, Springer, Berlin (1977)

Download references

Acknowledgments

The authors are grateful to Maria Carvalho (CMUP) for enlightening discussions and for several suggestions that improved the quality of the paper. A. Rodrigues has been funded by the European Regional Development Fund within the program COMPETE and by the Portuguese Government through FCT –Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2013. A. Rodrigues has benefited from the FCT grant SFRH/BPD/84709/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. P. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, M., Rodrigues, A.A.P. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst. 15, 309–326 (2016). https://doi.org/10.1007/s12346-015-0155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-015-0155-y

Keywords

Mathematics Subject Classification

Navigation