Skip to main content
Log in

Subcellular TSC22D4 Localization in Cerebellum Granule Neurons of the Mouse Depends on Development and Differentiation

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Canterini S, Mangia F, Fiorenza MT. Thg-1pit gene expression in granule cells of the developing mouse brain and in their synaptic targets, mature Purkinje, and mitral cells. Dev Dyn. 2005;234:689–97.

    Article  PubMed  CAS  Google Scholar 

  2. Canterini S, Bosco A, De Matteis V, Mangia F, Fiorenza MT. THG-1pit moves to nucleus at the onset of cerebellar granule neurons apoptosis. Mol Cell Neurosci. 2009;40:249–57.

    Article  PubMed  CAS  Google Scholar 

  3. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437:1173–8.

    Article  PubMed  CAS  Google Scholar 

  4. Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, et al. A protein–protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration. Cell. 2006;125:801–14.

    Article  PubMed  CAS  Google Scholar 

  5. Sowa ME, Bennet EJ, Gygi S, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138:389–403.

    Article  PubMed  CAS  Google Scholar 

  6. Velichkova M, Hasson T. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol. 2005;25:4501–13.

    Article  PubMed  CAS  Google Scholar 

  7. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 2007;35:786–93.

    Article  Google Scholar 

  8. Fiorenza MT, Mukhopadhyay M, Westphal H. Expression screening for Lhx3 downstream genes identifies Thg-1pit as a novel mouse gene involved in pituitary development. Gene. 2001;278:125–30.

    Article  PubMed  CAS  Google Scholar 

  9. Shibanuma M, Kuroki T, Nose K. Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor beta 1 and other growth factors. J Biol Chem. 1992;267:10219–24.

    PubMed  CAS  Google Scholar 

  10. D'Adamio F, Zollo O, Moraca R, Ayroldi E, Bruscoli S, Bartoli A, et al. A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity. 1997;7:803–12.

    Article  PubMed  Google Scholar 

  11. Fiol DF, Mak SK, Kultz D. Specific TSC22 domain transcripts are hypertonically induced and alternatively spliced to protect mouse kidney cells during osmotic stress. FEBS J. 2007;274:109–24.

    Article  PubMed  CAS  Google Scholar 

  12. Rentsch CA, Cecchini MG, Schwaninger R, Germann M, Markwalder R, Heller M, et al. Differential expression of TGFbeta-stimulated clone 22 in normal prostate and prostate cancer. Int J Cancer. 2006;118:899–906.

    Article  PubMed  CAS  Google Scholar 

  13. Shostak KO, Dmitrenko VV, Garifulin OM, Rozumenko VD, Khomenko OV, Zozulya YA, et al. Downregulation of putative tumor suppressor gene TSC-22 in human brain tumors. J Surg Oncol. 2003;82:57–64.

    Article  PubMed  CAS  Google Scholar 

  14. Lu Y, Kitaura J, Oki T, Komeno Y, Ozaki K, Kiyono M, et al. Identification of TSC-22 as a potential tumor suppressor that is upregulated by Flt3-D835V but not Flt3-ITD. Leukemia. 2007;21:2246–57.

    Article  PubMed  CAS  Google Scholar 

  15. Yu J, Ershler M, Yu L, Wei M, Hackanson B, Yokohama A, et al. TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyteleukemia. Blood. 2009;113:5558–67.

    Article  PubMed  CAS  Google Scholar 

  16. Huser CA, Pringle MA, Health VJ, Bell AK, Kendrick H, Smalley MJ, et al. TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death Differ. 2010;17:304–15.

    Article  PubMed  CAS  Google Scholar 

  17. Ayroldi E, Migliorati G, Bruscoli S, Marchetti C, Zollo O, Cannarile L, et al. Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood. 2001;98:743–53.

    Article  PubMed  CAS  Google Scholar 

  18. Mittelstadt PR, Ashwell JD. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem. 2001;276:29603–10.

    Article  PubMed  CAS  Google Scholar 

  19. Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J Biol Chem. 2005;280:39970–81.

    Article  PubMed  CAS  Google Scholar 

  20. Gallo V, Kingsbury A, Balazs R, Jorgensen OS. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci. 1987;7:2203–13.

    PubMed  CAS  Google Scholar 

  21. D'Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA. 1993;90:10989–93.

    Article  PubMed  Google Scholar 

  22. Hatten ME, Heintz N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci. 1995;18:385–408.

    Article  PubMed  CAS  Google Scholar 

  23. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2:484–91.

    Article  PubMed  CAS  Google Scholar 

  24. Nakanishi S, Okazawa M. Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells. J Physiol. 2006;575:389–95.

    Article  PubMed  CAS  Google Scholar 

  25. Okazawa M, Abe H, Katsukawa M, Iijima K, Kiwada T, Nakanishi S. Role of calcineurin signaling in membrane potential-regulated maturation of cerebellar granule cells. J Neurosci. 2009;29:2938–47.

    Article  PubMed  CAS  Google Scholar 

  26. Mugnaini E, Atluri RL, Houk JC. Fine structure of granular layer in turtle cerebellum with emphasis on large glomeruli. J Neurophysiol. 1974;37:1–29.

    PubMed  CAS  Google Scholar 

  27. Palay SL, Chan-Palay V. A guide to the synaptic analysis of the neuropil. Cold Spring Harb Symp Quant Biol. 1976;40:1–16.

    Article  PubMed  CAS  Google Scholar 

  28. Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21:375–82.

    Article  PubMed  CAS  Google Scholar 

  29. Zinchuk V, Zinchuk O, Okada T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem. 2007;40:101–11.

    Article  PubMed  CAS  Google Scholar 

  30. Manders E, Verbeek F, Aten J. Measurement of colocalization of objects in dual-colour confocal images. J Microsc. 1993;169:375–82.

    Article  Google Scholar 

  31. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22:103–14.

    Article  PubMed  CAS  Google Scholar 

  32. Dupont JL, Fourcaudot E, Beekenkamp H, Poulain B, Bossu JL. Synaptic organization of the mouse cerebellar cortex in organotypic slice cultures. Cerebellum. 2006;5:243–56.

    Article  PubMed  CAS  Google Scholar 

  33. Fuso A, Cavallaro RA, Zampelli A, D'Anselmi F, Piscopo P, Confaloni A, et al. Gamma-Secretase is differentially modulated by alterations of homocysteine cycle in neuroblastoma and glioblastoma cells. J Alzheimers Dis. 2007;11:275–90.

    PubMed  CAS  Google Scholar 

  34. Ramón y Cajal S (2000) Histogenesis of the cerebellum. In: Texture of the nervous system of man and the vertebrates. Springer, Vienna

  35. Leclerc N, Beesley PW, Brown P, Colonnier M, Gurd JW, Paladino T, et al. Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J Comp Neurol. 1989;280:197–212.

    Article  PubMed  CAS  Google Scholar 

  36. Gahwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997;20:471–7.

    Article  PubMed  CAS  Google Scholar 

  37. Lonchamp E, Dupont JL, Beekenkamp H, Poulain B, Bossu JL. The mouse cerebellar cortex in organotypic slice cultures: an in vitro model to analyze the consequences of mutations and pathologies on neuronal survival, development and function. Crit Rev Neurobiol. 2006;18:179–86.

    PubMed  CAS  Google Scholar 

  38. Adcock KH, Metzger F, Kapfhammer JP. Purkinje cell dendritic tree development in the absence of excitatory neurotransmission and of brain-derived neurotrophic factor in organotypic slice cultures. Neuroscience. 2004;127:137–45.

    Article  PubMed  CAS  Google Scholar 

  39. Chen S, Hirata K, Ren Y, Sugimori M, Llinas R, Hillman DE. Robust axonal sprouting and synaptogenesis in organotypic slice cultures of rat cerebellum exposed to increased potassium chloride. Brain Res. 2005;1057:88–97.

    Article  PubMed  CAS  Google Scholar 

  40. Brorson JR, Manzolillo PA, Miller RJ. Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells. J Neurosci. 1994;14:187–97.

    PubMed  CAS  Google Scholar 

  41. Lossi L, Alasia S, Salio C, Merighi A. Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol. 2009;88:221–45.

    Article  PubMed  Google Scholar 

  42. Lauritzen I, Zanzouri M, Hanore E, Duprat F, Ehrengruber MU, Lazdunsky M, et al. K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels. J Biol Chem. 2003;278:32068–76.

    Article  PubMed  CAS  Google Scholar 

  43. Encalada SE, Moya KL, Lehmann S, Zahn R. The role of the prion protein in the molecular basis for synaptic plasticity and nervous system development. J Mol Neurosci. 2008;34:9–15.

    Article  PubMed  CAS  Google Scholar 

  44. Franklin JL, Johnson EM. Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci. 1992;15:501–8.

    Article  PubMed  CAS  Google Scholar 

  45. Kester HA, Blanchetot C, den Hertog J, van der Saag PT, van der Burg B. Transforming growth factor-beta-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem. 1999;274:27439–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michele Giugliano for advice on cerebellum organotypic slices preparation. This work was supported by grants from Istituto Pasteur-Fondazione Cenci Bolognetti 2007–2010 (to F.M.) and Ateneo 2007 and 2008 (to M.T.F.).

Conflict of Interest

The authors declare no conflicting financial or other competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Fiorenza.

Additional information

Adriana Bosco and Valentina Carletti contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

A representative confocal immunofluorescence analysis of TSC22D4 expression and localization in PN9 cerebellum histological sections. The specificity of TSC22D4 immunostaining was assessed by omitting the anti-TSC22D4 antibody (CTRL). Note the somatodendritic, but not nuclear, TSC22D4 localization in Purkinje cells (asterisks). EGL, external granular layer; IGL, internal granule layer. Scale bar indicates 30 μm (JPEG 332 kb)

High resolution image (EPS 2957 kb)

Supplementary Fig. 2

Double TSC22D4 and Synaptophysin (Syp) immunostaining of PN40 cerebellum, analyzed by confocal microscopy. A representative histological section is shown in the panels. Inserts represent higher magnification (100×) of glomeruli. Asterisks and arrows indicate Purkinje cells and glomeruli, respectively. IGL, internal granular layer. Scale bars indicate 30 μm (panels) and 10 μm (inserts) (JPEG 2567 kb)

High resolution image (EPS 9252 kb)

Supplementary Fig. 3

Tsc22d4 mRNA expression in differentiating N1E-115 cells. DIV0 cells were cultured in vitro under conditions promoting either cell proliferation (medium containing 10% FBS) or differentiation (medium containing 2% FBS) and then processed for semiquantitative real-time RT-PCR analysis of Tsc22d4 mRNA at increasing days of in vitro culture (DIV1-DIV6), taking the amount of GAPDH message as internal reference. Histograms represent the mean ± SEM of Tsc22d4/GAPDH ratios obtained in three independent experiments. (JPEG 211 kb)

High resolution image (EPS 534 kb)

Supplementary Fig. 4

a Analysis of CGN and Purkinje cell differentiation and viability in in vitro cultured cerebellum slices. Ex vivo PN12 cerebellum slices were cultured in vitro for 10 days in a medium containing 5 or 25 mM KCl, then incubated with 5 μM SYTOX orange fluorescent dye in PBS for 5 min and analyzed by DIC and fluorescence microscopy. Dead cells were identified by their SYTOX orange positivity staining. Brackets indicate Purkinje cells. Scale bars indicate 40 μm. b Analysis of DNA fragmentation. DNA was extracted from either freshly made PN12 cerebellum slices (CTRL) or slices that had been in vitro cultured for 10 days in the presence of either 25 mM or 5 mM KCl (JPEG 1369 kb)

High resolution image (EPS 9143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canterini, S., Bosco, A., Carletti, V. et al. Subcellular TSC22D4 Localization in Cerebellum Granule Neurons of the Mouse Depends on Development and Differentiation. Cerebellum 11, 28–40 (2012). https://doi.org/10.1007/s12311-010-0211-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0211-8

Keywords

Navigation