Skip to main content
Log in

Scaffolding and Mimicry: A Semiotic View of the Evolutionary Dynamics of Mimicry Systems

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

The article discusses evolutionary aspects of mimicry from a semiotic viewpoint. The concept of semiotic scaffolding is used for this approach, and its relations with the concepts of exaptation and semiotic co-option are explained. Different dimensions of scaffolding are brought out as ontogenetic, evolutionary, physiological and cognitive. These dimensions allow for interpreting mimicry as a system that scaffolds itself. With the help of a number of mimicry cases, e.g. butterfly eyespots, brood parasitism, and plant mimesis, the evolutionary dynamics of mimicry in the open bio-semiosphere is investigated. The main argument is that biological mimicry largely develops through sign relations and communicative relations between organisms. It is proposed that mimicry systems should be described as two-layered structures composed of the ecological composition of the species involved and the semiotic structure of their communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(441–451), 536–553.

    Article  Google Scholar 

  • Bates, H. W. (1862). Contributions to an insect fauna of the Amazon valley. Lepidoptera Heliconidæ. Transactions of the Linnean Society Zoology, 23, 495–566.

    Article  Google Scholar 

  • Brakefield, P. M., & French, V. (1999). Butterfly wings: the evolution of development of colour patterns. BioEssays, 21, 391–401.

    Article  Google Scholar 

  • Caldwell, G. S., & Rubinoff, R. W. (1983). Avoidance of venomous sea snakes by naive herons and egrets. The Auk, 100(1), 195–198.

    Google Scholar 

  • Davies, N. B., & Welbergen, J. A. (2008). Cuckoo-hawk mimicry? an experimental test. Proceedings of the Royal Society B: Biological Sciences, 275(1644), 1817–1822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eimer, G. M. T. (1897). Die Entstehung der Arten auf Grund von vererben erworbener Eigenschaften nach den Gesetzen organischen Wachsens. II. Orthogenesis der Schmetterlinge. Leipzig: Engelmann.

    Google Scholar 

  • French, V. (1997). Pattern formation in colour on butterfly wings. Current Opinion in Genetics and Development, 7(4), 524–529.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Giorgi, Franco (2015). Developmental scaffolding. Biosemiotics, forthgoming.

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation—a missing term in the science of form. Paleobiology, 8(1), 4–15.

    Google Scholar 

  • Hoffmeyer, J. (2007). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 149–166). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hoffmeyer, J. (2010). Semiotic freedom: an emerging force. In P. Davies & N. H. Gregersen (Eds.), Information and the nature of reality. From physics to metaphysics (pp. 185–204). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Hoffmeyer, J. (2014a). The semiome: from genetic to semiotic scaffolding. Semiotica, 198, 11–31.

    Google Scholar 

  • Hoffmeyer, J. (2014b). Semiotic scaffolding: A biosemiotic link between sema and soma. In K. R. Cabell & J. Valsiner (Eds.), The catalyzing mind: Beyond models of causality (pp. 95–110). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hombría, J. C. (2011). Butterfly eyespot serial homology: enter the Hox genes. BMC Biology, 2011(9), 26. doi:10.1186/1741-7007-9-26.

    Article  Google Scholar 

  • Howse, P. E. (2013). Lepidopteran wing patterns and the evolution of satyric mimicry. Biological Journal of the Linnean Society, 109(1), 203–214.

    Article  Google Scholar 

  • Howse, P. E., & Allen, J. A. (1994). Satyric mimicry – the evolution of apparent imperfection. Proceedings of the Royal Society, B257(1349), 111–114.

    Article  Google Scholar 

  • Jiggins, C. D. (2008). Ecological speciation in mimetic butterflies. BioScience, 58(6), 541–548.

    Article  Google Scholar 

  • Kikuchi, D. W., & Pfennig, D. W. (2013). Imperfect mimicry and the limits of natural selection. The Quarterly Review of Biology, 88(4), 297–315.

    Article  PubMed  Google Scholar 

  • Kimler, W. C. (1983). Mimicry: Views of naturalists and ecologists before modern synthesis. In M. Grene (Ed.), Dimensions of Darwinism: Themes and counterthemes in twentieth-century evolutionary theory (pp. 97–127). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kleisner, K. (2010). Re-semblance and re-evolution: paramorphism and semiotic co-option may explain the re-evolution of similar phenotypes. Sign Systems Studies, 38(1/4), 378–392.

    Google Scholar 

  • Kleisner, K. (2011). Perceive, co-opt, modify, and live! organism as a centre of experience. Biosemiotics, 4, 223–241.

    Article  Google Scholar 

  • Kleisner, K., & Maran, T. (2014). Visual communication in animals: Applying Portmannian and Uexküllian biosemiotic approach. In D. Machin (Ed.), Visual communication (Handbooks of communication science) (pp. 559–676). Berlin: DeGruyter Mouton.

    Google Scholar 

  • Komárek, S. (2003). Mimicry, aposematism and related phenomena. Mimetism in nature and the history of its study. Muenchen: Lincom Europa.

    Google Scholar 

  • Mallet, J., McMillan, W. O., & Jiggins, C. D. (1998). Mimicry and warning color at the boundary between races and species. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 390–403). Oxford: Oxford University Press.

    Google Scholar 

  • Maran, T. (2010). Semiotic modeling of mimicry with reference to brood parasitism. Sign Systems Studies, 38(1/4), 349–377.

    Google Scholar 

  • Maran, T. (2011). Becoming a sign: the mimic’s activity in biological mimicry. Biosemiotics, 4(2), 243–257.

    Article  Google Scholar 

  • Maran, T. (2012). Are ecological codes archetypal structures? In T. Maran, K. Lindström, R. Magnus, & M. Toennessen (Eds.), Semiotics in the wild. Essays in honour of Kalevi Kull on the occasion of his 60th birthday (pp. 147–156). Tartu: Tartu University Press.

    Google Scholar 

  • Maran, T. (2014). Semiotization of matter. A hybrid zone between biosemiotics and material ecocriticism. In S. Iovino & S. Oppermann (Eds.), Material ecocriticism. Bloomington: Indiana University Press.

    Google Scholar 

  • Maran, T., & Kleisner, K. (2010). Towards an evolutionary biosemiotics: semiotic selection and semiotic co-option. Biosemiotics, 3(2), 189–200.

    Article  Google Scholar 

  • Nijhout, H. F. (1986). Pattern and pattern diversity on Lepidopteran wings. BioScience, 36(8), 527–533.

    Article  Google Scholar 

  • Nijhout, H. F. (1994). Developmental perspectives on evolution of butterfly mimicry. BioScience, 44(3), 148–157.

    Article  Google Scholar 

  • Nijhout, H. F., Maini, P. K., Madzvamuse, A., Wathen, A. J., & Sekimura, T. (2003). Pigmentation pattern formation in butterflies: experiments and models. Comptes Rendus Biologies, 326(8), 717–727.

    Article  PubMed  Google Scholar 

  • Oliver, J. C., Beaulieu, J. M., Gall, L. F., Piel, W. H., & Monteiro, A. (2014). Nymphalid eyespot serial homologues originate as a few individualized modules. Proceedings of the Royal Society B: Biological Sciences, 281(1787), 1471–2954.

    Article  Google Scholar 

  • Otaki, J. M. (2008). Phenotypic plasticity of wing color patterns revealed by temperature and chemical applications in a nymphalid butterfly Vanessa indica. Journal of Thermal Biology, 33(2), 128–139.

    Article  CAS  Google Scholar 

  • Pasteur, G. (1982). A classificatory review of mimicry systems. Annual Review of Ecology and Systematicsi, 13, 169–199.

    Article  Google Scholar 

  • Payne, R. B. (1977). The ecology of brood parasitism in birds. Annual Review of Ecology and Systematics, 8, 1–28.

    Article  Google Scholar 

  • Payne, R. B., Payne, L. L., Woods, J. L., & Sorenson, M. D. (2000). Imprinting and the origin of parasite host species associations in brood-parasitic indigobirds, Vidua chalybeata. Animal Behavior, 59(1), 69–81.

    Article  Google Scholar 

  • Pernetta, J. C. (1977). Observations on the habits and morphology of the sea snake Laticauda colubrina (Schneider) in Fiji. Canadian Journal of Zoology, 55(10), 1612–1619.

    Article  Google Scholar 

  • Randall, J. E. (2005). A review of mimicry in marine fishes. Zoological Studies, 44(3), 299–328.

    Google Scholar 

  • Rothschild, M. (1984). Aide memoire mimicry. Ecological Entomology, 9(3), 311–319.

    Article  Google Scholar 

  • Sorenson, M. D., Sefc, K. M., & Payne, R. B. (2003). Speciation by host switch in brood parasitic indigobirds. Nature, 424, 928–931.

    Article  CAS  PubMed  Google Scholar 

  • Thorogood, R., & Davies, N. B. (2013). Hawk mimicry and the evolution of polymorphic cuckoos. Chinese Birds, 4(1), 39–50.

    Article  Google Scholar 

  • Twomey, E., Vestergaard, J. S., & Summers, K. (2014). Reproductive isolation related to mimetic divergence in the poison frog Ranitomeya imitator. Nature Communications, 5, 4749. doi:10.1038/ncomms5749.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, A. R. (1871). Contributions to the theory of natural selection. A series of essays (2nd ed.). New York: Macmillan and Co.

    Google Scholar 

  • Weible, D. (2013). Approaching a semiotics of exaptation: at the intersection between biological evolution and technological development. Sign Systems Studies, 41(4), 504–527.

    Article  Google Scholar 

  • Welbergen, J. A., & Davies, N. B. (2011). A parasite in wolf’s clothing: hawk mimicry reduces mobbing of cuckoos by hosts. Behavioral Ecology, 22(3), 574–579.

    Article  Google Scholar 

  • Wickler, W. (1968). Mimicry in plants and animals. London: Weidenfeld & Nicolson.

    Google Scholar 

  • Wiens, D. (1978). Mimicry in plants. Evolutionary Biology, 11, 365–403.

    Article  Google Scholar 

  • Williams, L. E., Huang, J. Y., & Bargh, J. A. (2009). The scaffolded mind: higher mental processes are grounded in early experience of the physical world. European Journal of Social Psychology, 39, 1257–1267.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research for this article was supported by the European Union through the European Regional Development Fund (Centre of Excellence for Cultural Theory), also under institutional research grant IUT02-44 from the Estonian Research Council and under project contract EMP151 by the Norway Financial Mechanism 2009–2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Maran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maran, T. Scaffolding and Mimicry: A Semiotic View of the Evolutionary Dynamics of Mimicry Systems. Biosemiotics 8, 211–222 (2015). https://doi.org/10.1007/s12304-014-9223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-014-9223-y

Keywords

Navigation