, Volume 1, Issue 2, pp 85-100
Date: 29 Apr 2009

A proposition on memes and meta-memes in computing for higher-order learning

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In computational intelligence, the term ‘memetic algorithm’ has come to be associated with the algorithmic pairing of a global search method with a local search method. In a sociological context, a ‘meme’ has been loosely defined as a unit of cultural information, the social analog of genes for individuals. Both of these definitions are inadequate, as ‘memetic algorithm’ is too specific, and ultimately a misnomer, as much as a ‘meme’ is defined too generally to be of scientific use. In this paper, we extend the notion of memes from a computational viewpoint and explore the purpose, definitions, design guidelines and architecture for effective memetic computing. Utilizing two conceptual case studies, we illustrate the power of high-order meme-based learning. With applications ranging from cognitive science to machine learning, memetic computing has the potential to provide much-needed stimulation to the field of computational intelligence by providing a framework for higher order learning.