, Volume 3, Issue 4, pp 233-239
Date: 20 Jan 2010

Surface roughness modelling in hard turning operation of AISI 4140 using CBN cutting tool

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In this study, the influence of hardness (H) and spindle speed (N) on surface roughness (Ra) in hard turning operation of AISI 4140 using CBN cutting tool has been studied. A multiple regression analysis using analysis of variance is conducted to determine the performance of experimental values and to show the effect of hardness and spindle speed on the surface roughness. Artificial neural network (ANN) and regression methods have been used for modelling of surface roughness in hard turning operation of AISI 4140 using CBN cutting tool. The input parameters are selected to be as hardness and spindle speed and the output is the surface roughness. Regression and artificial neural network optimum models have been presented for predicting surface roughness. The predicted surface roughness by the employed models has been compared with the experimental data which shows the preference of ANN in prediction of surface roughness during hard turning operation. Finally, a reverse ANN model is constructed to estimate the hardness and spindle speed from surface roughness values. The results indicate that the reverse ANN model can predict hardness for the train data and spindle speed for the test data with a good accuracy but the predicted spindle speed for the train data and the predicted hardness for the test data don’t have acceptable accuracy.