Skip to main content

Advertisement

Log in

Lateral-Flow Device for Diagnosis of Fungal Infection

  • Advances in Diagnosis of Invasive Fungal Infections (U Binder, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Invasive aspergillosis (IA) is a life-threatening complication of haematological malignancy and haematopoietic stem cell transplantation caused by the ubiquitous fungus Aspergillus. Current diagnosis of IA is multifaceted relying on data from clinical, radiological, and microbiological sources. The detection of Aspergillus biomarkers provides strategies both to pre-empt and to exclude disease, but the choice of biomarker assays is limited, requiring specialist equipment and training. This review examines recent advances in the accurate diagnosis of IA through the development of an Aspergillus lateral-flow device (LFD) incorporating a monoclonal antibody, JF5, which detects an antigenic marker of active infection. Recent trials using bronchoalveolar lavage fluids and serum samples from humans and from animal models of disease, have demonstrated the utility of the LFD as a rapid and user-friendly adjunct test for the quick and accurate diagnosis of pulmonary infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thompson GR, Patterson TF. Pulmonary aspergillosis. Semin Respir Crit Care Med. 2008;29:103–10.

    Article  PubMed  Google Scholar 

  2. Miceli MH, Díaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis. 2011;11:142–51.

    Article  PubMed  Google Scholar 

  3. Walsh TJ, Groll AH, Hiemenz J. Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect. 2004;10:48–66.

    Article  PubMed  Google Scholar 

  4. • Dagenais TRT, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;22(3):447–65. A contemporary review of the biology of A. fumigatus, airway colonization, adaptation to the mammanlian lung environment and its interaction with cells of the immune system.

    Article  PubMed  CAS  Google Scholar 

  5. Ainsworth GC: Aspergillosis. In Introduction to the history of medical and verterinary mycology. Cambridge University Press; 2002:47–9.

  6. Thornton CR. Development of an immunochromatographic lateral flow device for rapid serodiagnosis of invasive aspergillosis. Clin Vacc Immunol. 2008;15:1095–105.

    Article  CAS  Google Scholar 

  7. Beirão F, Araujo R. State of the art diagnostic of mould diseases: a practical guide for clinicians. Eur J Clin Microbiol Infect Dis. 2012. doi:10.1007/s10096-012-1722–7.

    PubMed  Google Scholar 

  8. Johnson GL, Bibby DF, Wong S, et al. A MIQE-Compliant Real-Time PCR Assay for Aspergillus Detection. PLoS One. 2012;7(7):e40022.

    Article  PubMed  CAS  Google Scholar 

  9. Denning DW. Invasive aspergillosis. Clin Infect Dis. 1998;26:781–805.

    Article  PubMed  CAS  Google Scholar 

  10. • Levitz SM. Innate recognition of fungal cell walls. PLoS Pathog. 2010;6(4):e1000758. This article reviews current knowledge of how the human host recognizes fungal pathogens through cell wall ligands and cognate phagocytic receptors.

    Article  PubMed  Google Scholar 

  11. Bozza S, Gaziano R, Spreca A, et al. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th reponses to the fungus. J Immunol. 2002;168:1362–71.

    PubMed  CAS  Google Scholar 

  12. • Barton R, (2013). Laboratory diagnosis of invasive aspergillosis: from diagnosis to prediction to outcome. Scientifica, Hindawi Publishing Corporation. Available at http://www.hindawi.com/journals/scientifica/2013/459405/Accessed January 2013. A comprehensive review of the laboratory diagnosis of invasive aspergillosis.

  13. Thornton CR. Detection of Invasive Aspergillosis. Adv Appl Microbiol. 2008;7:187–216.

    Google Scholar 

  14. •• De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organisation for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46:1813–21. This article defines the diagnostic criteria needed to establish possible, probable, or proven invasive fungal disease, and is a revised version of the 2002 consensus group guidelines.

    Article  PubMed  Google Scholar 

  15. •• White PL, Parr C, Thornton C, et al. An evaluation of real-time PCR, galactomannan ELISA and a novel lateral-flow device for diagnosis of invasive aspergillosis. 2013;51:1510–16. A large-scale evaluation of LFD diagnosis of IA, using serum from haematological patients, and comparison of assay sensitivity and specificity as a stand-alone test or when used in combination with commercial GM-EIA and PCR assays.

  16. • Thornton CR, Johnson G, Agrawal S. Detection of invasive pulmonary aspergillosis in haematological malignancy patients by using lateral-flow technology. J Vis Exp. 2012;61:e3721. An open-access video journal demonstrating the mechanics of the Aspergillus LFD, serum and BALf preparation, and interpretation of test results using human BALf samples.

    Google Scholar 

  17. Hsu JL, Ruoss SJ, Bower ND, et al. Diagnosing invasive fungal infections in critically ill patients. Crit Rev Microbiol. 2011;37(4):277–312.

    Article  PubMed  CAS  Google Scholar 

  18. Obayashi T, Negishi K, Suzuki T, et al. Reappraisal of the serum (1→3)-β-D-glucan assay for the diagnosis of invasive fungal infections – a study based on autopsy cases from 6 years. Clin Infect Dis. 2008;46(12):1864–70.

    Article  PubMed  CAS  Google Scholar 

  19. Verweij PE, Mennink-Kersten MASH. Issues with galactomannan testing. Med Mycol. 2006;44:179–83.

    Article  Google Scholar 

  20. Klont RR, Mennink-Kersten MA, Verweij PE. Utility of Aspergillus antigen detection in specimens other than serum specimens. Clin Infect Dis. 2004;15:1467–74.

    Article  Google Scholar 

  21. Park SY, Lee S-O, Choi S-H, et al. Aspergillus galactomannan antigen assay in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Infect. 2010;61:492–8.

    Article  PubMed  Google Scholar 

  22. •• Hoenigl M, Koidl C, Duettman W, et al. Bronchoalveolar lavage lateral-flow device test for invasive pulmonary aspergillosis diagnosis in haematological malignancy and solid organ transplant patients. J Infect. 2012;65:588–91. LFD detection of IA using human BALf samples and its performance compared to the commercial Platelia GM-EIA.

    Article  PubMed  Google Scholar 

  23. Buess M, Cathomas G, Halter J, et al. Aspergillus-PCR in brochoalveolar lavage for detection of invasive pulmonary aspergillosis in immunocompromised patients. BMC Infect Dis. 2012;12:237–44.

    Article  PubMed  Google Scholar 

  24. McDonagh A, Federova ND, Crabtree J, et al. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathogens. 2008;4(9):e1000154.

    Article  PubMed  Google Scholar 

  25. Cairns T, Minuzzi F, Bignell E. The host-infecting fungal transcriptome. FEMS Microbiol Lett. 2010;307:1–11.

    Article  PubMed  CAS  Google Scholar 

  26. Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology. 2005;151:1021–32.

    Article  PubMed  CAS  Google Scholar 

  27. Spikes S, Xu R, Nguyen CK, et al. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis. 2008;197:479–86.

    Article  PubMed  CAS  Google Scholar 

  28. Sutton P, Newcombe NR, Waring P, et al. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun. 1994;62:1192–8.

    PubMed  CAS  Google Scholar 

  29. Pardo J, Urban C, Galvez EM, et al. The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice. J Cell Biol. 2006;174:509–19.

    Article  PubMed  CAS  Google Scholar 

  30. Sugui JA, Pardo J, Chang YC, et al. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell. 2007;6:1562–9.

    Article  PubMed  CAS  Google Scholar 

  31. Domingo MP, Colmenarejo C, Martínez-Lostao L, et al. Bis(methyl)gliotoxin proves to be a more stable and reliable marker for invasive aspergillosis than gliotoxin and suitable for use in diagnosis. Diagn Microbiol Infect Dis. 2012;73:57–64.

    Article  PubMed  CAS  Google Scholar 

  32. Eisendle M, Schrettl M, Kragl C, et al. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell. 2006;5:1596–603.

    Article  PubMed  CAS  Google Scholar 

  33. Haas H, Schoeser M, Lesuisse E, et al. Characterisation of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem J. 2003;371:505–13.

    Article  PubMed  CAS  Google Scholar 

  34. Petrik M, Haas H, Dobrozemsky G, et al. 68Ga-Siderophores for PET imaging of invasive aspergillosis:proof of principle. J Nucl Med. 2010;51:639–45.

    Article  PubMed  CAS  Google Scholar 

  35. Schrettl M, Kim HS, Eisendle M, et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol. 2008;70:27–43.

    Article  PubMed  CAS  Google Scholar 

  36. Zou M, Tang L, Zhao S, et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. PLoS One. 2012;7(8):e43347.

    Article  PubMed  CAS  Google Scholar 

  37. Köhler G, Milstein C. Continuous culture of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  PubMed  Google Scholar 

  38. Hirschi S, Letscher-Bru V, Pottecher J, et al. Disseminated Trichosporon mycotoxinivorans, Aspergillus fumigatus and Scedosporium apiospermum coinfection after lung and liver transplantation in a cystic fibrosis patient. J Clin Microbiol. 2012;50:4168–70.

    Article  PubMed  Google Scholar 

  39. Iweala OI. HIV diagnostic tests: an overview. Contraception. 2004;70:141–7.

    Article  PubMed  Google Scholar 

  40. Shyu RH, Shyu HF, Liu HW, et al. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon. 2002;40:255–8.

    Article  PubMed  CAS  Google Scholar 

  41. Smits HL, Eapen CK, Sugathan S, et al. Lateral-flow assay for rapid serodiagnosis of human leptospirosis. Clin Diagn Lab Immunol. 2001;8:166–9.

    PubMed  CAS  Google Scholar 

  42. Marot-Leblond A, Grimaud L, David S, et al. Evaluation of a rapid immunochromatographic assay for identification of Candida albicans and Candida dubliniensis. J Clin Microbiol. 2004;42(11):4956–60.

    Article  PubMed  CAS  Google Scholar 

  43. Jarvis NJ, Percival A, Bauman S, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53:1019–23.

    Article  PubMed  CAS  Google Scholar 

  44. Krajaejun T, Imkhieo S, Intaramat A, et al. Development of an immunochromatographic test for rapid serodiagnosis of human pythiosis. Clin Vacc Immunol. 2009;16:506–9.

    Article  CAS  Google Scholar 

  45. Marcilla A, Monteagudo C, Mormeneo S, et al. Monoclonal antibody 3H8: a useful tool in the diagnosis of candidiasis. Microbiology. 1999;145:695–701.

    Article  PubMed  CAS  Google Scholar 

  46. Marot-Leblond A, Grimaud L, Nail S, et al. New monoclonal antibody specific for Candida albicans germ tube. J Clin Microbiol. 2000;38:61–7.

    PubMed  CAS  Google Scholar 

  47. Brandt S, Thorkildson P, Kozel TR. Monoclonal antibodies reactive with immunorecessive epitopes of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans. Clin Diagn Lab Immunol. 2003;10:903–9.

    PubMed  CAS  Google Scholar 

  48. Percival A, Thorkildson P, Kozel TR. Monoclonal antibodies specific for immunorecessive epitopes of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcocus neoformans, reduce serotype bias in immunoassay for cryptococcal antigen. Clin Vacc Immunol. 2011;18:1292–6.

    Article  CAS  Google Scholar 

  49. Wiederhold NP, Thornton CR, Najvar LK, et al. Comparison of lateral flow technology and galactomannan and (1→3)-β-D-glucan assays for detection of invasive pulmonary aspergillosis. Clin Vacc Immunol. 2009;16:1844–6.

    Article  CAS  Google Scholar 

  50. •• Wiederhold NP, Najvar LK, Bocanegra R, et al. Inter-Laboratory and Inter-Study Reproducibility of a Novel Lateral-Flow Device and the Influence of Antifungal Therapy on the Detection of Invasive Pulmonary Aspergillosis. J Clin Microbiol. 2013;51:459–65. A study using serum and BALf from an established animal model of IA, comparing the LFD, and commercial GM-EIA and β-glucan tests for disease diagnosis and the effect of antifungal treatments on assay sensitivities.

    Article  PubMed  CAS  Google Scholar 

  51. McCulloch E, Ramage G, Rajendran R, et al. Antifungal treatment affects the laboratory diagnosis of invasive aspergillosis. J Clin Pathol. 2012;65:83–6.

    Article  PubMed  CAS  Google Scholar 

  52. Buchheidt D. Therapy with antifungals decreases the diagnostic performance of PCR for diagnosing invasive aspergillosis in bronchoalveolar lavage samples of patients with haematological malignancies. J Antimicrob Chemother. 2012;67:2260–7.

    Article  PubMed  Google Scholar 

  53. Vanselow M, Brandt ME, Park BJ. Diagnosis and management of Cryptococcal disease in resource-limited settings. Curr Fungal Infect Rep. 2012;

  54. O’Farrell B. Evolution of lateral flow-based immunoassay systems. In: Wong R, Tse H, editors. In Lateral Flow Immunoassay. New York: Humana Press; 2009. p. 1–35.

    Chapter  Google Scholar 

  55. Marcos JY, Pincus DH. Fungal diagnostics: review of commercially available methods. In: O’Connor L, Glynn B, editors. Fungal Diagnostics: Methods and Protocols, Methods in Molecular Biology. 968th ed. New York: Springer Science and Business Media; 2013. p. 25–54.

    Chapter  Google Scholar 

  56. Thornton CR. Tracking the emerging human pathogen Pseudallescheria boydii by using highly specific monoclonal antibodies. Clin Vacc Immunol. 2009;16:756–64.

    Article  CAS  Google Scholar 

  57. Thornton CR, Wills O. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol. 2013, in press.

Download references

Disclaimer

The comments and conclusions in this report are the thoughts and observations of the author.

Conflict of Interest

The author developed the Aspergillus monoclonal antibody JF5 and the Aspergillus LFD described in this article, and is the CEO, Technical Director, and a shareholder of the University of Exeter spin-out company ISCA Diagnostics Limited, which has been granted patents, and may receive royalties for the products listed above.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Thornton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornton, C.R. Lateral-Flow Device for Diagnosis of Fungal Infection. Curr Fungal Infect Rep 7, 244–251 (2013). https://doi.org/10.1007/s12281-013-0138-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-013-0138-x

Keywords

Navigation