Skip to main content

Advertisement

Log in

An Invisible Threat: Mutation-Mediated Resistance to Triazole Drugs in Aspergillus

Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Aspergillosis has emerged as an important contributor to infection-related morbidity and mortality in susceptible populations. This comes at a time when we are also seeing an increase in the vulnerable populations themselves. At the same time, some parts of the world are reporting an increased incidence of aspergillosis refractory to triazole therapy. Resistance to triazole drugs may have major implications for aspergillosis management since our antifungal armamentarium is limited. This review gives an overview of populations at risk of developing aspergillosis and highlights resistance mechanisms that may contribute to morbidity and mortality in these vulnerable populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Baddley JW, Marr KA, Andes DR, et al. Patterns of susceptibility of Aspergillus isolates recovered from patients enrolled in the Transplant-Associated Infection Surveillance Network. J Clin Microbiol. 2009;47(10):3271–5. This study investigated the susceptibility of various clinically relevant Aspergillus spp. in transplants recipients.

    Article  PubMed  CAS  Google Scholar 

  2. Shi J-Y, Xu Y-C, Shi Y, et al. In vitro susceptibility testing of Aspergillus spp. against voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin. Chin Med J. 2010;123(19):2706–9.

    PubMed  CAS  Google Scholar 

  3. Vanhee LM, Perman D, Nelis HJ, et al. Rapid quantification of itraconazole-resistant Aspergillus fumigatus in air. J Microbiol Methods. 2010;81(2):197–9.

    Article  PubMed  CAS  Google Scholar 

  4. Panagopoulou P, Filioti J, Farmeki E, et al. Filamentous fungi in a tertiary care hospital: environmental surveillance and susceptibility to antifungal drugs. Infect Control Hosp Epidemiol. 2007;28(1):60–7.

    Article  PubMed  Google Scholar 

  5. Pagano L, Caira M, Candoni A, et al. Invasive aspergillosis in patients with acute myeloid leukemia: a SEIFEM-2008 registry study. Haematologica. 2010;95(4):644–50.

    Article  PubMed  Google Scholar 

  6. Bulpa P, Dive A, Sebille Y. Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease. Eur Respir J. 2007;30(4):782–800.

    Article  PubMed  CAS  Google Scholar 

  7. Kim A, Nicolau DP, Kuti JL. Hospital costs and outcomes among intravenous antifungal therapies for patients with invasive aspergillosis in the United States. Mycoses. 2011;54(5):e301–12.

    Article  PubMed  Google Scholar 

  8. Baddley JW, Andes DR, Marr KA, et al. Antifungal therapy and length of hospitalization in transplant patients with invasive aspergillosis. Med Mycol. 2012. doi:10.3109/13693786.2012.690108.

  9. • Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50(8):1101–11. This paper highlights the prevalence of invasive aspergillosis in organ transplant recipients.

    Article  PubMed  Google Scholar 

  10. • Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–100. This paper highlights the prevalence of invasive aspergillosis in HSTC transplant recipients.

    Article  PubMed  Google Scholar 

  11. Nam HS, Jeon K, Um SW, et al. Clinical characteristics and treatment outcomes of chronic necrotizing pulmonary aspergillosis: a review of 43 cases. Int J Infect Dis. 2010;14(6):e479–82.

    Article  PubMed  Google Scholar 

  12. Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381–90.

    Article  PubMed  CAS  Google Scholar 

  13. • Bueid A, Howard SJ, Moore CB, et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010;65(10):2116–8. This paper highlights the frequency of Aspergillus infections and antifungal resistance in UK from 1997 to 2009.

    Article  PubMed  CAS  Google Scholar 

  14. • Lockhart SR, Frade JP, Etienne KA, et al. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother. 2011;55(9):4465–8. This paper highlights the global frequency of antifungal resistance using the ARTEMIS collection. More importantly, this is the first paper that reported the TR34/L98H resistance mechanism in A. fumigatus outside Europe.

    Article  PubMed  CAS  Google Scholar 

  15. van der Linden JW, Snelders E, Kampinga GA, et al. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009. Emerg Infect Dis. 2011;17(10):1846–54.

    Article  PubMed  Google Scholar 

  16. Smith NL, Denning DW. Underlying conditions in chronic pulmonary aspergillosis including simple aspergilloma. Eur Respir J. 2011;37:865–72.

    Article  PubMed  CAS  Google Scholar 

  17. Fukuda T, Boeckh M, Carter RA, et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood. 2003;102:827–33.

    Article  PubMed  CAS  Google Scholar 

  18. Cystic Fibrosis Canada. Canadian CF Patient Data Registry Report – 2010. http://www.cysticfibrosis.ca/assets/files/pdf/CPDR_ReportE.pdf. Accessed 7 Sept 2012.

  19. Denning DW, Pleuvry A, Cole DC. Global burden of chronic pulmonary aspergillosis as a sequel to pulmonary tuberculosis. Bull World Health Org. 2011;89:864–72.

    Article  PubMed  Google Scholar 

  20. Singh N, Paterson DL. Aspergillus infections in transplant recipients. Clin Microbiol Rev. 2005;18(1):44–69.

    Article  PubMed  CAS  Google Scholar 

  21. Delhaes L, Monchy S, Fréalle E, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community-implications for therapeutic management. PLoS One. 2012;7(4):e36313.

    Article  PubMed  CAS  Google Scholar 

  22. Xu H, Li L, Wang LX, et al. Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: a case control study from China. Clin Microbiol Infect. 2012;18(4):403–8.

    Article  PubMed  CAS  Google Scholar 

  23. Perkhofer S, Lass-Flörl C, Hell M, et al. The nationwide Austrian Aspergillus registry: a prospective data collection on epidemiology, therapy and outcome of invasive mould infections in immunocompromised and/or immunosuppressed patients. Int J Antimicrob Agents. 2010;36(6):531–6.

    Article  PubMed  CAS  Google Scholar 

  24. Neofytos D, Horn D, Anaissie E, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis. 2009;48(3):265–73.

    Article  PubMed  CAS  Google Scholar 

  25. Michallet M, Sobh M, Morisset S, et al. Risk factors for invasive aspergillosis in acute myeloid leukemia patients prophylactically treated with posaconazole. Med Mycol. 2011;49(7):681–7.

    PubMed  Google Scholar 

  26. Michallet M, Bénet T, Sobh M, et al. Invasive aspergillosis: an important risk factor on the short- and long-term survival of acute myeloid leukemia (AML) patients. Eur J Clin Microbiol Infect Dis. 2012;31(6):991–7.

    Article  PubMed  CAS  Google Scholar 

  27. Pagano L, Caira M, Nosari A, et al. Fungal infections in recipients of hematopoietic stem cell transplants: results of the SEIFEM B-2004 study – Sorveglianza Epidemiologica Infezioni Fungine Nelle Emopatie Maligne. Clin Infect Dis. 2007;45(9):1161–70.

    Article  PubMed  CAS  Google Scholar 

  28. Organ Procurement and Transplantation Network (OPTN) and Scientific Registry of Transplant Recipients (SRTR). OPTN/SRTR 2010 Annual Data Report. Rockville, MD: Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation; 2011.

  29. Pasquini MC, Wang Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR summary slides, 2011. http://www.cibmtr.org

  30. Peeters J, Neeskens P, Tollenaere JP, et al. Characterization of the interaction of 2-hydroxypropyl-beta-cyclodextrin with itraconazole at pH 2, 4, and 7. J Pharm Sci. 2002;91(6):1414–22.

    Article  PubMed  CAS  Google Scholar 

  31. Bowden RA, Ljungman P, Snydman DR. Transplant Infections. Lippincott Williams & Wilkins: Philadelphia, PA. 2010. p 218.

  32. Schwartz S, Reisman A, Troke PF. The efficacy of voriconazole in the treatment of 192 fungal central nervous system infections: a retrospective analysis. Infection. 2011;39(3):201–10.

    Article  PubMed  CAS  Google Scholar 

  33. European Committee on Antimicrobial Susceptibility Testing. Rationale documents on antifungal agents. http://www.eucast.org/antifungal_susceptibility_testing_afst/rationale_documents_for_antifungals/. Accessed 7 Sept 2012.

  34. Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, et al. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. 2008;52(7):2468–2472.

  35. Pfaller MA, Diekema DJ, Ghannoum MA, et al. Wild-type MIC distribution and epidemiological cutoff values for Aspergillus fumigatus and three triazoles as determined by the Clinical and Laboratory Standards Institute broth microdilution methods. J Clin Microbiol. 2009;47(10):3142–6.

    Article  PubMed  CAS  Google Scholar 

  36. Kondori N, Svensson E, Mattsby-Baltzer I. In vitro susceptibility of filamentous fungi to itraconazole, voriconazole and posaconazole by Clinical and Laboratory Standards Institute reference method and E-test. Mycoses. 2011;54(5):e318–22.

    Article  PubMed  CAS  Google Scholar 

  37. •• Espinel-Ingroff A, Diekema DJ, Fothergill A, et al. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J Clin Microbiol. 2010;48(9):3251–7. This paper established the ECV for Aspergillus spp. and thus serve as a guideline for researchers to determine resistant aspergilli.

    Article  PubMed  CAS  Google Scholar 

  38. Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15.

    Article  PubMed  CAS  Google Scholar 

  39. Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Disease Society of America. Clin Infect Dis. 2008;46:327–60.

    Article  PubMed  CAS  Google Scholar 

  40. Neofytos D, Shoham S, Dierberg K, et al. Diagnostic and therapeutic challenges in a liver transplant recipient with central nervous system invasive aspergillosis. Diagn Microbiol Infect Dis. 2012;73(4):374–5.

    Article  PubMed  Google Scholar 

  41. Auberger J, Lass-Flörl C, Aigner M, et al. Invasive fungal breakthrough infections, fungal colonization and emergence of resistant strains in high-risk patients receiving antifungal prophylaxis with posaconazole: real-life data from a single-centre institutional retrospective observational study. J Antimicrob Chemother. 2012;67(9):2268–73.

    Article  PubMed  CAS  Google Scholar 

  42. Paniagua MM, Marzoa R, Barge CE, et al. Efficacy and tolerance of different types of prophylaxis for prevention of early aspergillosis after heart transplantation. Transplant Proc. 2010;42(8):3014–6.

    Article  Google Scholar 

  43. Howard SJ, Pasqualotto AC, Denning DW. Azole resistance in allergic bronchopulmonary aspergillosis and Aspergillus bronchitis. Clin Microbiol Infect. 2010;16:683–8.

    Article  PubMed  CAS  Google Scholar 

  44. Björkholm M, Kalin M, Grane B, et al. Long-term treatment of invasive sinus, tracheobroncheal, pulmonary and intracerebral aspergillosis in acute lymphoblastic leukaemia. Infection. 2012;40(1):81–5.

    Article  PubMed  Google Scholar 

  45. Ohlstein DH, Hooten C, Perez J, et al. Orbital aspergillosis: voriconazole – the new standard treatment? Case Rep Ophthalmol. 2012;3(1):46–53.

    Article  Google Scholar 

  46. •• Snelders E, Camps SM, Karawajczyk A, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One. 2012;7(3):e31801. This study investigated the impact that fungicides might have on TR34/L98H mutation. It suggests that this resistance mechanism is mediated by fungicides.

    Article  PubMed  CAS  Google Scholar 

  47. Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;15(7):1068–76.

    Article  PubMed  CAS  Google Scholar 

  48. Verweij PE, Howard SJ, Melchers WJ, et al. Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat. 2009;12(6):141–7.

    Article  PubMed  CAS  Google Scholar 

  49. • Chowdhary A, Kathuria S, Randhawa HS, et al. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. J Antimicrob Chemother. 2012;67(2):362–6. This study showed that the TR34/L98H resistance mechanism is present in India.

    Article  PubMed  CAS  Google Scholar 

  50. Tashiro M, Izumikawa K, Minematsu A, et al. Antifungal susceptibilities of Aspergillus fumigatus clinical isolates obtained in Nagasaki, Japan. Antimicrob Agents Chemother. 2012;56(1):584–7.

    Article  PubMed  CAS  Google Scholar 

  51. • Mortensen KL, Mellado E, Lass-Flörl C, et al. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrob Agents Chemother. 2010;54(11):4545–9. This study suggested that the TR34/L98H resistance mechanism has an environmental origin.

    Article  PubMed  CAS  Google Scholar 

  52. Snelders E, Melchers WJ, Verweij PE. Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis? Future Microbiol. 2011;6(3):335–47.

    Article  PubMed  CAS  Google Scholar 

  53. Mayr A, Lass-Flörl C. Epidemiology and antifungal resistance in invasive aspergillosis according to primary disease – review of the literature. Eur J Med Res. 2011;13:153–7.

    Article  Google Scholar 

  54. Blum G, Kainzner B, Grif K, et al. In vitro and in vivo role of heat shock protein 90 in amphotericin B resistance of Aspergillus terreus. Clin Microbiol Infect. 2012 doi:10.1111/j.1469-0691.2012.03848.x.

  55. Hadrich I, Makni F, Neji S, et al. Amphotericin B in vitro resistance is associated with fatal Aspergillus flavus infection. Med Mycol. 2012. doi:10.3109/13693786.2012.684154.

  56. Lockhart SR, Zimbeck AJ, Baddley JW, et al. In vitro echinocandins susceptibility of Aspergillus isolates from patients enrolled in the Transplant-Associated Infection Surveillance Network. Antimicrob Agents Chemother. 2011;55(8):3944–6.

    Article  PubMed  CAS  Google Scholar 

  57. Hargrove TY, Wawrzak Z, Liu J, et al. Structure complex of sterol-demethylase (CYP51) with 14a-methylenecyclopropyl-d7-24,25-dihydrolanosterol. J Lipid Res. 2012;53(2):311–20.

    Article  PubMed  CAS  Google Scholar 

  58. Warrilow AG, Melo N, Martel CM, et al. Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B. Antimicrob Agents Chemother. 2010;54(10):4225–34.

    Article  PubMed  CAS  Google Scholar 

  59. Hu W, Sillaots S, Lemieux S, et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog. 2007;3(3):e24.

    Article  PubMed  Google Scholar 

  60. Chen J, Li H, Li R, et al. Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma. J Antimicrob Chemother. 2005;55(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  61. Mellado E, Garcia-Effron G, Alcazer-Fuoli L, et al. Substitutions at methionine 220 in the 14alpha-sterol demethylase (Cyp51A) of Aspergillus fumigatus are responsible for resistance in vitro to azole antifungal drugs. Antimicrob Agents Chemother. 2004;48(7):2747–50.

    Article  PubMed  CAS  Google Scholar 

  62. Snelders E, Karawajczyk A, Schaftenaar G, et al. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob Agents Chemother. 2010;54(6):2425–30.

    Article  PubMed  CAS  Google Scholar 

  63. •• Camps SMT, Camps SMT, van der Linden JW, Li Y, et al. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature. Antimicrob Agents Chemother. 2012;56(1):10–6. This study demonstrated the ability of A. fumigatus to become resistant to triazoles under drug pressure.

    Article  PubMed  CAS  Google Scholar 

  64. Bellete B, Raberin H, Morel J, et al. Acquired resistance to voriconazole and itraconazole in a patient with pulmonary aspergilloma. Med Mycol. 2010;48(1):197–200.

    Article  PubMed  CAS  Google Scholar 

  65. Pelaez T, Gijón P, Bunsow E, et al. Resistance to voriconazole due to a G448S substitution in Aspergillus fumigatus in a patient with cerebral aspergillosis. J Clin Microbiol. 2012;50(7):2531–4.

    Article  PubMed  CAS  Google Scholar 

  66. Albarrag AM, Anderson MJ, Howard SJ, et al. Interrogation of related clinical pan-azole-resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51A promoter. Antimicrob Agents Chemother. 2011;55(11):5113–21.

    Article  PubMed  CAS  Google Scholar 

  67. Arendrup MC, Jensen RH, Grif K, et al. In vivo emergence of Aspergillus terreus with reduced azole susceptibility and a Cyp51a M217I alteration. J Infect Dis. 2012;206(6):981–5.

    Article  PubMed  CAS  Google Scholar 

  68. Liu W, Sun Y, Chen W, et al. The T788G mutation in the cyp51C gene confers voriconazole resistance in Aspergillus flavus causing aspergillosis. Antimicrob Agents Chemother. 2012;56(5):2598–603.

    Article  PubMed  CAS  Google Scholar 

  69. Krishnan-Natesan S, Chandrasekar PH, Alangaden GJ, et al. Molecular characterisation of cyp51A and cyp51B genes coding for P450 14α-lanosterol demethylases A (CYP51Ap) and B (CYP51Bp) from voriconazole-resistant laboratory isolates of Aspergillus flavus. Int J Antimicrob Agents. 2008;32(6):519–24.

    Article  PubMed  CAS  Google Scholar 

  70. Alanio A, Cabaret O, Sitterlé E, et al. Azole preexposure affects the Aspergillus fumigatus population in patients. Antimicrob Agents Chemother. 2012;56(9):4948–50.

    Article  PubMed  CAS  Google Scholar 

  71. da Silva Ferreira ME, Capellaro JL, dos Res Marques E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother. 2004;48(11):4405–13.

    Article  PubMed  Google Scholar 

  72. Verweij PE, Mellado E, Melchers WJ. Multiple-triazole-resistant aspergillosis. N Engl J Med. 2007;356(14):1481–3.

    Article  PubMed  CAS  Google Scholar 

  73. Snelders E, van der Lee HA, Kuijpers J, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008;5(11):e219.

    Article  PubMed  Google Scholar 

  74. Mellado E, Garcia-Effron G, Alcazer-Fuoli L, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51(6):1897–904.

    Article  PubMed  CAS  Google Scholar 

  75. Arendrup MC, Mavridou E, Mortensen KL, et al. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence. PLoS One. 2010;5(4):e10080.

    Article  PubMed  Google Scholar 

  76. • Denning DW, Park S, Lass-Flörl C, et al. High-frequency triazole resistance found in non-culturable Aspergillus fumigatus from lungs of patients with chronic fungal disease. Clin Infect Dis. 2011;52(9):1123–9. This study showed that the rate of triazole resistance aspergilli might be underreported. It also indicated that TR34 and L98H might exist as single mutation in patients.

    Article  PubMed  CAS  Google Scholar 

  77. •• Camps SM, Rijs AJ, Klaassen CH, et al. Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism. J Clin Microbiol. 2012;50(8):2674–80. This study demonstrated that TR34/L98H mutants are closely related genetically. The study also implied that this mutation might originate from a single ancestor/location and spread to different places around the world.

    Article  PubMed  Google Scholar 

  78. Burgel PR, Baixench MT, Amsellem M, et al. High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole. Antimicrob Agents Chemother. 2012;56(2):869–74.

    Article  PubMed  CAS  Google Scholar 

  79. Morio F, Aubin GG, Danner-Boucher I, et al. High prevalence of triazole resistance in Aspergillus fumigatus, especially mediated by TR/L98H, in a French cohort of patients with cystic fibrosis. J Antimicrob Chemother. 2012;67(8):1870–3.

    Article  PubMed  CAS  Google Scholar 

  80. Mortensen KL, Jensen RH, Johansen HK, et al. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance. J Clin Microbiol. 2010;49(6):2243–51.

    Article  Google Scholar 

  81. Snelders E, Huis In 't Veld RA, Rijs AJ, et al. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75(12):4053–407.

    Article  PubMed  CAS  Google Scholar 

  82. Slaven JW, Anderson MJ, Sanglard D, et al. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol. 2002;36(3):199–206.

    Article  PubMed  CAS  Google Scholar 

  83. Bowyer P, Mosquera J, Anderson M, et al. Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus. FEMS Microbiol Lett. 2012;332(1):10–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mary Brandt and Errol Reiss for their critical review of the manuscript.

The findings and conclusions of this article are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Disclosure

C. Pham: none; S. Lockhart: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn R. Lockhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, C.D., Lockhart, S.R. An Invisible Threat: Mutation-Mediated Resistance to Triazole Drugs in Aspergillus . Curr Fungal Infect Rep 6, 288–295 (2012). https://doi.org/10.1007/s12281-012-0106-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-012-0106-x

Keywords

Navigation