Skip to main content
Log in

Diversity of extended-spectrum and plasmid-mediated AmpC β-lactamases in Enterobacteriaceae isolates from portuguese health care facilities

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A group of 124 Enterobacteriaceae isolates resistant to third generation cephalosporins, and collected in distinct health care facilities of different Portuguese regions was analysed. The great majority of the isolates were also resistant to fourth generation cephalosporins (83.9%), monobactam (96%), amoxicillin plus clavulanic acid (85.5%), and piperacillin plus tazobactam (66.9%). Overall, 84.7% (105/124) were multidrug resistant. Molecular methods enabled us to identify 86.3% (107/124) extended-spectrum β-lactamases (ESBL) producers, revealing a diversity of class A β-lactamases from different families, like TEM (TEM-1, TEM-10, TEM-24, and TEM-52), SHV (SHV-1, SHV-12, and SHV-28), CTX-M (CTX-M-1, CTX-M-9, CTX-M-14, CTX-M-15, and CTXM-32), and GES (GES-1). We have also detected class C enzymes like plasmid-mediated AmpC β-lactamases (PMAβs, DHA-1, and CMY-2) and chromosomal AmpCs in Enterobacter and Citrobacter spp. The PMAβ genetic context mapping suggests association with mobile elements, plasmid importation and the potential emergence of these β-lactamases. The most prevalent β-lactamase detected was CTX-M-15 (66.1%) and in 41.1% of the isolates it was associated with TEM-, OXA-type β-lactamases and Aac(6)᾿Ib-cr, which might indicate that the respective genotype has settled in our country. Indeed, CTX-M-15 was distributed amongst distinct clinical settings of several health care facilities (93.5%) from various regions. We provide evidence of a concerning clinical situation that includes vast occurrence of ESBLs, the settling of CTX-M β-lactamases, and the report of plasmidic and chromosomal AmpC in Portugal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  • Aarestrup F.M., Hasman H., Olsen I., and Sørensen G. 2004. International spread of bla CMY-2-mediated cephalosporin resistance in a multiresistant Salmonella enterica serovar Heidelberg isolate stemming from the importation of a boar by Denmark from Canada. Antimicrob. Agents Chemother. 48, 1916–1917.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adriaenssens N., Coenen S., Versporten A., Muller A., Vankerckhoven V., Goossens H., and Group E.P. 2011. European surveillance of antimicrobial consumption (ESAC): Quality appraisal of antibiotic use in europe. J. Antimicrob. Chemother. 66 Suppl 6, vi71–77.

    Google Scholar 

  • Alouache S., Estepa V., Messai Y., Ruiz E., Torres C., and Bakour R. 2013. Characterization of ESBLs and associated quinolone resistance in Escherichia coli and Klebsiella pneumoniae isolates from an urban wastewater treatment plant in Algeria. Microb. Drug Resist. 20, 30–38.

    Article  PubMed  Google Scholar 

  • Bradford P.A. 2001. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14, 933–951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briales A., Rodríguez-Martínez J.M., Velasco C., de Alba P.D., Rodríguez-Baño J., Martínez-Martínez L., and Pascual A. 2012. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases in Spain. Int. J. Antimicrob. Agents 39, 431–434.

    Article  CAS  PubMed  Google Scholar 

  • Call D.R., Singer R.S., Meng D., Broschat S.L., Orfe L.H., Anderson J.M., Herndon D.R., Kappmeyer L.S., Daniels J.B., and Besser T.E. 2010. bla CMY-2-positive IncA/C plasmids from Escherichia coli and Salmonella enterica are a distinct component of a larger lineage of plasmids. Antimicrob. Agents Chemother. 54, 590–596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cambray G., Guerout A.M., and Mazel D. 2010. Integrons. Annu. Rev. Genet. 44, 141–166.

    Article  CAS  PubMed  Google Scholar 

  • Caniça M.M., Barthélémy M., Gilly L., Labia R., Krishnamoorthy R., and Paul G. 1997. Properties of IRT-14 (TEM-45), a newly characterized mutant of TEM-type β-lactamases. Antimicrob. Agents Chemother. 41, 374–378.

    PubMed Central  PubMed  Google Scholar 

  • Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K.L., and Threlfall E.J. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63, 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Castanheira M., Mendes R.E., Woosley L.N., and Jones R.N. 2011. Trends in carbapenemase-producing Escherichia coli and Klebsiella spp. from Europe and the Americas: Report from the sentry antimicrobial surveillance programme (2007-09). J. Antimicrob. Chemother. 66, 1409–1411.

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea M.M., Arena F., Pallecchia L., and Rossolini G.M. 2013. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 303, 305–317.

    Article  PubMed  Google Scholar 

  • EARS-Net. 2012. Antimicrobial resistance surveillance in Europe 2011. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.

    Google Scholar 

  • Freitas F., Machado E., Ribeiro T.G., Novais A., and Peixe L. 2013. Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. Eur. J. Clin. Microbiol. Infect. Dis. doi:10.1007/s10096-013-1983-9.

    Google Scholar 

  • Grundmann H., Livermore D.M., Giske C.G., Canton R., Rossolini G.M., Campos J., Vatopoulos A., Gniadkowski M., Toth A., Pfeifer Y., and et al. 2010. Carbapenem-non-susceptible Enterobacteriaceae in Europe: Conclusions from a meeting of national experts. Euro Surveill. 15.

  • Ho P.L., Lo W.U., Chan J., Cheung Y.Y., Chow K.H., Yam W.C., Lin C.H., and Que T.L. 2013. pIMP-PH114 carrying bla IMP-4 in a Klebsiella pneumoniae strain is closely related to other multidrug-resistant IncA/C2 plasmids. Curr. Microbiol. doi: 10.1007/s00284-013-0471-x.

    Google Scholar 

  • Jacoby G.A. 2009. Ampc β-lactamases. Clin. Microbiol. Rev. 22, 161–182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones-Dias D., Manageiro V., Francisco A.P., Martins A.P., Domingues G., Louro D., Ferreira E., and Caniça M. 2013. Assessing the molecular basis of transferable quinolone resistance in Escherichia coli and Salmonella spp. from food producing animals and food products. Vet. Microbiol. doi: 265 10.1016/j.vetmic.2013.08.010.

    Google Scholar 

  • Kang M.S., Besser T.E., and Call D.R. 2006. Variability in the region downstream of the bla CMY-2 β-lactamase gene in Escherichia coli and Salmonella enterica plasmids. Antimicrob. Agents Chemother. 50, 1590–1593.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leverstein-van Hall M.A., Box A.T., Blok H.E., Paauw A., Fluit A.C., and Verhoef J. 2002. Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. J. Infect. Dis. 186, 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Livermore D.M. 2009. β-Lactamases-the threat renews. Curr. Protein Pept. Sci. 10, 397–400.

    Article  CAS  PubMed  Google Scholar 

  • Livermore D.M., Canton R., Gniadkowski M., Nordmann P., Rossolini G.M., Arlet G., Ayala J., Coque T.M., Kern-Zdanowicz I., Luzzaro F., and et al. 2007. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 59, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Machado E., Coque T.M., Cantón R., Baquero F., Sousa J.C., Peixe L., and the Portuguese Resistance Study Group. 2006. Dissemination in Portugal of CTX-M-15-, OXA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac(6′)-ib-cr gene, which encodes an aminoglycoside-and fluoroquinolonemodifying enzyme. Antimicrob. Agents Chemother. 50, 3220–3221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maltezou H.C., Giakkoupi P., Maragos A., Bolikas M., Raftopoulos V., Papahatzaki H., Vrouhos G., Liakou V., and Vatopoulos A.C. 2009. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J. Infect. 58, 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Manageiro V., Ferreira E., Jones-Dias D., Louro D., Pinto M., Diogo J., and Caniça M. 2012. Emergence and risk factors of β-lactamase-mediated resistance to oxyimino-β-lactams in Enterobacteriaceae isolates. Diagn. Microbiol. Infect. Dis. 72, 272–277.

    Article  CAS  PubMed  Google Scholar 

  • Mata C., Miró E., Alvarado A., Garcillán-Barcia M.P., Toleman M., Walsh T.R., de la Cruz F., and Navarro F. 2012. Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampc genes: Findings from a spanish hospital 1999–2007. J. Antimicrob. Chemother. 67, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Mata C., Miró E., Toleman M., Rivera M.A., Walsh T.R., and Navarro F. 2011. Association of bla DHA-1 and qnrB genes carried by broad-host-range plasmids among isolates of Enterobacteriaceae at a spanish hospital. Clin. Microbiol. Infect. 17, 1514–1517.

    Article  CAS  PubMed  Google Scholar 

  • Mendonça N., Ferreira E., Louro D., ARSIP Participants, and Caniça M. 2009. Molecular epidemiology and antimicrobial susceptibility of extended-and broad-spectrum β-lactamaseproducing Klebsiella pneumoniae isolated in Portugal. Int. J. Antimicrob. Agents 34, 29–37.

    Article  PubMed  Google Scholar 

  • Mendonça N., Leitão J., Manageiro V., Ferreira E., and Caniça M. 2007. Spread of extended-spectrum β-lactamase CTX-Mproducing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrob. Agents Chemother. 51, 1946–1955.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendonça N., Louro D., Castro A.P., Diogo J., and Caniça M. 2006. CTX-M-15, OXA-30 and TEM-1-producing Escherichia coli in two portuguese regions. J. Antimicrob. Chemother. 57, 1014–1016.

    Article  PubMed  Google Scholar 

  • Nicolas-Chanoine M.H., Blanco J., Leflon-Guibout V., Demarty R., Alonso M.P., Caniça M.M., Park Y.J., Lavigne J., Pitout J., and Johnson J.R. 2008. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 61, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Patel G. and Bonomo R.A. 2011. Status report on carbapenemases: Challenges and prospects. Expert. Rev. Anti. Infect. Ther. 9, 555–570.

    Article  CAS  PubMed  Google Scholar 

  • Paterson D.L. and Bonomo R.A. 2005. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 18, 657–686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Philippon A., Arlet G., and Jacoby G.A. 2002. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother. 46, 1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Queenan A.M. and Bush K. 2007. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 20, 440–458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robicsek A., Strahilevitz J., Jacoby G.A., Macielag M., Abbanat D., Park C.H., Bush K., and Hooper D.C. 2006. Fluoroquinolonemodifying enzyme: A new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Silva-Sánchez J., Cruz-Trujillo E., Barrios H., Reyna-Flores F., Sánchez-Pérez A.; Bacterial Resistance Consortium, and Garza-Ramos U. 2013. Characterization of plasmid-mediated quinolone resistance (PMQR) genes in extended-spectrum β-lactamase-producing Enterobacteriaceae pediatric clinical isolates in Mexico. PLoS ONE 8, e77968.

    Article  Google Scholar 

  • Toleman M.A. and Walsh T.R. 2011. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol. Rev. 35, 912–935.

    Article  CAS  PubMed  Google Scholar 

  • Verdet C., Benzerara Y., Gautier V., Adam O., Ould-Hocine Z., and Arlet G. 2006. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: Genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob. Agents Chemother. 50, 607–617.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yano H., Uemura M., Endo S., Kanamori H., Inomata S., Kakuta R., Ichimura S., Ogawa M., Shimojima M., Ishibashi N., and et al. 2013. Molecular characteristics of extended-spectrum β-lactamases in clinical isolates from Escherichia coli at a Japanese tertiary hospital. PLoS ONE 8, e64359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Manuela Caniça.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones-Dias, D., Manageiro, V., Ferreira, E. et al. Diversity of extended-spectrum and plasmid-mediated AmpC β-lactamases in Enterobacteriaceae isolates from portuguese health care facilities. J Microbiol. 52, 496–503 (2014). https://doi.org/10.1007/s12275-014-3420-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3420-x

Keywords

Navigation