Skip to main content
Log in

Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomyces viridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P<0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15–7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R., and Fatma, A. 2010. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces 81, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., and Sastry, M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B. 28, 313–318.

    Article  CAS  Google Scholar 

  • Akaighe, N., MacCuspie, R.I., Navarro, D.A., Aga, D.S., Banerjee, S., Sohn, M., and Sharma, V.K. 2011. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 45, 3895–3901.

    Article  CAS  PubMed  Google Scholar 

  • Akhnazarova, S. and Kafarov, V. 1982. Experiment optimization in chemistry and chemical engineering. Mir Publishers. Moscow.

    Google Scholar 

  • Box, G.E.P., Hunter, W.G., and Hunter, J.S. 1978. Hunter. Statistics for experiments. pp. 291–334. John Wiley and Sons. New York, USA.

    Google Scholar 

  • Brause, R., Moeltgen, H., and Kleinermanns, K. 2002. Characterization of laser ablated and chemically reduced silver colloids in aqueous solution by UV/Vis spectroscopy and STM/SEM microscopy. Appl. Phys. B 75, 711–716.

    Article  CAS  Google Scholar 

  • Braydich-Stolle, L., Hussain, S., Schlager, J.J., and Hofmann M.C. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 88, 412–419.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chao, T.C., Song, G.X., Hansmeier, N., Westerhoff, P., Herckes, P., and Halden, R.U. 2012. Characterization and LC-MS/MS based quantification of hydroxylated fullerenes. Anal. Chem. 83, 1777–1783.

    Article  Google Scholar 

  • Chen, X.C., Bai, J.X., Cao, J.M., Li, Z.J., Xiong, J., Zhang, L., Hong, Y., and Ying, H.J. 2009. Medium optimization for the production of cyclic adenosine 3,5-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour. Technol. 100, 919–924.

    Article  CAS  PubMed  Google Scholar 

  • Das, S., Kar, S., and Chaudhuri, S. 2006. Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. J. Appl. Phys. 99, 114303(1–7).

    Google Scholar 

  • Djekrif-Dakhmouche, S., Gheribi-Aoulmi, Z., Meraihi, Z., and Bennamoun, L. 2006. Application of a statistical design to the optimization of culture medium for a-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J. Food Eng. 73, 190–197.

    Article  Google Scholar 

  • Elibol, M. 2004. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology. Process Biochem. 39, 1057–1062.

    Article  CAS  Google Scholar 

  • El-Naggar, N.E., Sherief, A.A., and Hamza, S.S. 2011. Bioconversion process of rice straw by thermotolerant cellulolytic Streptomyces viridiochromogenes under solid-state fermentation conditions for bioethanol production. Afr. J. Biotechnol. 10, 11998–12011.

    CAS  Google Scholar 

  • Faramarzi, M.A. and Forootanfar, H. 2011. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf. B Biointerfaces 87, 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., and Kim, J.O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Ganesh Babu, M.M. and Gunasekaran, P. 2009. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf. B Biointerfaces 74, 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Hemanth Naveen, K., Gaurav Kumar, S., Karthik, L., and Bhaskara Rao, K.V. 2010. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res. 2, 161–167.

    Google Scholar 

  • Hudlikar, M., Joglekar, S., Dhaygude, M., and Kodam, K. 2012. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. J. Nano. Res. 14, 1–6.

    Article  Google Scholar 

  • Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., and Gurunathan, S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B. 65, 150–153.

    Article  CAS  Google Scholar 

  • Kalishwaralal, K., Banumathi, E., Pandian, S.B.R.K., Deepak, V., Muniyandi, J., and Eom, S.H. 2009. Silver nanoparticles inhibit VEGF induced cell proliferation and mgration in bovine retinal endothelial cells. Colloids Surf. B. 73, 51–57.

    Article  CAS  Google Scholar 

  • Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Kottaisamy, M., Manikanth, S.B., Karthikeyan, B., and Gurunathan, S. 2010. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B. Biointerfaces 77, 257–262.

    Article  CAS  PubMed  Google Scholar 

  • Kaushik, R., Saran, S., Isar, J., and Saxena, R.K. 2006. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol. Catal B-Enzyme 40, 121–126.

    Article  CAS  Google Scholar 

  • Kovnir, K., Armbrüster, M., Teschner, D., Venkov, T.V., Szentmiklósi, L., Jentoft, F.C., Grin, Y., and Schlogl, R. 2009. In situ surface characterization of the intermetallic compound PdGa. A highly selective hydrogenation catalyst. Surf. Sci. 603, 1784–1792.

    Article  CAS  Google Scholar 

  • Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., and Mohan, N. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 76, 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V.S., Nagaraja, B.M., Shashikala, V., Padmasri, A.H., Madhavendra, S.S., and Raju, B.D. 2004. Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J. Mol. Catal. A. 223, 313–319.

    Article  CAS  Google Scholar 

  • Lansdown, A.B. 2006. Silver in health care: antimicrobial effects and safety in use. Curr. Probl. Dermatol. 33, 17–34.

    CAS  PubMed  Google Scholar 

  • Magudapathy, P., Gangopadhyay, P., Panigrahi, B.K., Nair, K.G.M., and Dhara, S. 2001. Electrical transport studies of Ag nanocrystallites embedded in glass matrix. Physics B. 299, 142–146.

    Article  CAS  Google Scholar 

  • Matsumura, Y., Yoshikata, K., Kunisaki, S., and Tsuchido, T. 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Envir. Microbiol. 69, 4278–4281.

    Article  CAS  Google Scholar 

  • Mie, G. 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 25, 377–445.

    Article  CAS  Google Scholar 

  • Minaeian, S., Shahverdi, A.R., Nohi, A.S., and Shahverdi, H.R. 2008. Extracellular biosynthesis of silver nanoparticles by some bacteria. J. Sci. I.A.U. 17, 1–4.

    Google Scholar 

  • Mohanpuria, P., Rana, K.N., and SYadav, K. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10, 507–517.

    Article  CAS  Google Scholar 

  • Montgomery, D.C. 1991. Design and analysis of experiments. Wiley, New York, USA.

    Google Scholar 

  • Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., and Yacaman, M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotech. 16, 2346–2353.

    Article  CAS  Google Scholar 

  • Natarajan, K., Subbalaxmi, S., and Ramachandra Murthy, V. 2010. Microbial production of silver nanoparticles. Digest. J. Nanomater. Biostruc. 5, 135–140.

    Google Scholar 

  • Panwal, J.H., Viruthagiri, T., and Baskar, G. 2011. Statistical modeling and optimization of enzymatic milk fat splitting by soybean lecithin using response surface methodology. Inter. J. Nutri. Metabol. 3, 50–57.

    Google Scholar 

  • Rahman, R.N.Z.A., Lee, P.G., Basri, M., and Salleh, A.B. 2005. Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresour. Technol. 96, 429–436.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Yadav, A., and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran, S., Patel, A.K., Nampoothiri, K.M., Francis, F., Nagy, V., Szakacs, G., and Pandey, A. 2004. Coconut oil cake: A potential raw material for the production of α-amylase. Bioresour. Technol. 93, 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Saifuddin, N., Wong, C.W., and Nur Yasumira, A.A. 2009. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J. Chem. 6, 61–70.

    CAS  Google Scholar 

  • Sanghi, R. and Verma, P. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Biores. Technol. 100, 501–504.

    Article  CAS  Google Scholar 

  • Senapati, S., Ahmad, A., Khan, M.I., Sastry, M., and Kumar, R. 2005. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small. 1, 517–520.

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi, R.A., Fakhimi, A., Shahverdi, H.R., and Minaian, S. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphyloccocus aureus and Escherichia coli. Nanomedicine 2, 168–171

    Google Scholar 

  • Shivaji, S., Madhu, S., and Singh, S. 2011. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem. 46, 1800–1807.

    Article  CAS  Google Scholar 

  • Singh, M., Singh, S., Prasad, S., and Gambhir, I.S. 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct. 3, 115–122.

    Google Scholar 

  • Sosa, I.O., Noguez, C., and Barrera, R.G. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. 107, 6269–6275.

    CAS  Google Scholar 

  • Souza, G.I.H., Marcato, P.D., Durán, N., and Esposito, E. 2004. Utilization of Fusarium oxysporum in the biosynthesis of silver nanoparticles and its antibacterial activities. In IX National Meeting of Environmental Microbiology. Curtiba, Brazil.

    Google Scholar 

  • Tang, Y.X., Subramaniam, V.P., Lau, T.H., Lai, Y.K., Gong, D.G., Kanhere, P.D., Cheng, Y.H., Chen, Z., and Dong, Z.L. 2011. In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution. Appl. Catal. B: Environmental. 106, 577–585.

    Article  CAS  Google Scholar 

  • Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S.R.K., and Gurunathan, S. 2010. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloid. Surf. B. 75, 335–341.

    Article  CAS  Google Scholar 

  • Valodkar, M., Bhadorai, A., Pohnerkar, J., Mohan, M., and Thakore, S. 2010. Morphology and antibacterial activity of carbohydrate stabilized silver nanoparticles. Carbohydr. Res. 345, 1767–1773.

    Article  CAS  PubMed  Google Scholar 

  • Verma, V.C., Kharwar, R.N., and Gange, A.C. 2009. Biosynthesis of noble metal nanoparticles and their application. CAB Review: perspectives in agriculture, Vatenary science. Nutr. Nat. Resour. 4, 1–17.

    Google Scholar 

  • Vigneshwaran, N., Arati Kathe, N., Varadarajan, P.V., Rajan Nachane, P., and Balasubramanya, R.H. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B. Interfaces 53, 55–59.

    Article  CAS  Google Scholar 

  • Waksman, S.A. 1959. Strain specificity and production of antibiotic substance. X. Characterization and classification of species within the Streptomyces griseus group. Proc. Natl. Acad. Sci. USA 45, 1043–1047.

    Article  CAS  PubMed  Google Scholar 

  • Wenster-Botz, D. 2000. Experimental design for fermentation media development: Statistical design or global random search? J. Biosci. Bioeng. 90, 473–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noura El-Ahmady El-Naggar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Naggar, N.EA., Abdelwahed, N.A.M. Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes . J Microbiol. 52, 53–63 (2014). https://doi.org/10.1007/s12275-014-3410-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3410-z

Keywords

Navigation