Nano Research

pp 1–15

High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

  • John W. F. To
  • Jia Wei Desmond Ng
  • Samira Siahrostami
  • Ai Leen Koh
  • Yangjin Lee
  • Zhihua Chen
  • Kara D. Fong
  • Shucheng Chen
  • Jiajun He
  • Won-Gyu Bae
  • Jennifer Wilcox
  • Hu Young Jeong
  • Kwanpyo Kim
  • Felix Studt
  • Jens K. Nørskov
  • Thomas F. Jaramillo
  • Zhenan Bao
Research Article

DOI: 10.1007/s12274-016-1347-8

Cite this article as:
To, J.W.F., Ng, J.W.D., Siahrostami, S. et al. Nano Res. (2016). doi:10.1007/s12274-016-1347-8
  • 188 Downloads

Abstract

The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O2-H2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of a regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. This work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.

Keywords

electrocatalysis porous carbon density functional theory 

Supplementary material

12274_2016_1347_MOESM1_ESM.pdf (3.2 mb)
High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • John W. F. To
    • 1
  • Jia Wei Desmond Ng
    • 1
    • 2
  • Samira Siahrostami
    • 1
  • Ai Leen Koh
    • 3
  • Yangjin Lee
    • 4
  • Zhihua Chen
    • 1
  • Kara D. Fong
    • 1
  • Shucheng Chen
    • 1
  • Jiajun He
    • 5
  • Won-Gyu Bae
    • 1
  • Jennifer Wilcox
    • 5
  • Hu Young Jeong
    • 6
  • Kwanpyo Kim
    • 4
  • Felix Studt
    • 7
    • 8
    • 9
  • Jens K. Nørskov
    • 1
    • 7
  • Thomas F. Jaramillo
    • 1
  • Zhenan Bao
    • 1
  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research, Jurong IslandSingaporeSingapore
  3. 3.Stanford Nano Shared FacilitiesStanford UniversityStanfordUSA
  4. 4.Department of PhysicsUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  5. 5.Department of Chemical and Biological EngineeringColorado School of MinesGoldenUSA
  6. 6.UNIST Central Research Facilities (UCRF)Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  7. 7.SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator LaboratoryMenlo ParkUSA
  8. 8.Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  9. 9.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany