Skip to main content
Log in

Immunity of electronic and transport properties of phosphorene nanoribbons to edge defects

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present an extensive study of the electronic properties and carrier transport in phosphorene nanoribbons (PNRs) with edge defects by using rigorous atomistic quantum transport simulations. This study reports on the size- and defect-dependent scaling laws governing the transport gap, and the mean free path and carrier mobility in the PNRs of interest for future nanoelectronics applications. Our results indicate that PNRs with armchair edges (aPNRs) are more immune to defects than zig-zag PNRs (zPNRs), while both PNR types exhibit superior immunity to defects relative to graphene nanoribbons (GNRs). An investigation of the mean free path demonstrated that even in the case of a low defect density the transport in PNRs is diffusive, and the carrier mobility remains a meaningful transport parameter even in ultra-small PNRs. We found that the electron–hole mobility asymmetry (present in large-area phosphorene) is retained only in zPNRs for W > 4 nm, while in other cases the asymmetry is smoothed out by edge defect scattering. Furthermore, we showed that aPNRs outperform both zPNRs and GNRs in terms of carrier mobility, and that PNRs generally offer a superior mobility-bandgap trade-off, relative to GNRs and monolayer MoS2. This work identifies PNRs as a promising material for the extremely scaled transistor channels in future post-silicon electronic technology, and presents a persuasive argument for experimental work on nanostructured phosphorene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Semiconductor Industry Association. International Technology Roadmap for Semiconductors (ITRS), 2013 ed. [Online]. http://www.itrs.net (accessed Jan 5, 2016).

    Google Scholar 

  2. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  3. Cao, W.; Kang, J. H.; Sarkar, D.; Liu, W.; Banerjee, K. 2D semiconductor FETs: Projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 2015, 62, 3459–3469.

    Article  Google Scholar 

  4. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  5. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  6. Qiao, J. S.; Kong, X. H.; Hu, Z.-X.; Yang, F.; Ji, W. Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Google Scholar 

  7. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  8. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  9. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Intrinsic electronic transport properties of highquality monolayer and bilayer MoS2. Nano Lett. 2013, 13, 4212–4216.

    Article  Google Scholar 

  10. Pradhan, N. R.; Rhodes, D.; Zhang, Q.; Talapatra, S.; Terrones, M.; Ajayan, P. M.; Balicas, L. Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 2013, 102, 123105.

    Article  Google Scholar 

  11. Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.

    Article  Google Scholar 

  12. Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  13. Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

    Article  Google Scholar 

  14. Han, X. Y.; Morgan Stewart, H.; Shevlin, S. A.; Catlow, C. R. A.; Guo, Z. X. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 2014, 14, 4607–4614.

    Article  Google Scholar 

  15. Tran, V.; Yang, L. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B 2014, 89, 245407.

    Article  Google Scholar 

  16. Taghizadeh Sisakht, E.; Zare, M. H.; Fazileh, F. Scaling laws of band gaps of phosphorene nanoribbons: A tightbinding calculation. Phys. Rev. B 2015, 91, 085409.

    Article  Google Scholar 

  17. Hu, W.; Yang, J. L. Defects in phosphorene. J. Phys. Chem. C 2015, 119, 20474–20480.

    Article  Google Scholar 

  18. Ramasubramaniam, A.; Muniz, A. R. Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys. Rev. B 2014, 90, 085424.

    Article  Google Scholar 

  19. Guo, H. Y.; Lu, N.; Dai, J.; Wu, X. J.; Zeng, X. C. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 2014, 118, 14051–14059.

    Article  Google Scholar 

  20. Hu, W.; Lin, L.; Yang, C. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory. Phys. Chem. Chem. Phys. 2015, 17, 31397–31404.

    Article  Google Scholar 

  21. Ezawa, M. Topological origin of quasi-flat edge band in phosphorene. New J. Phys. 2014, 16, 115004.

    Article  Google Scholar 

  22. Pereira, V. M.; Lopes dos Santos, J. M. B.; Castro Neto, A. H. Modeling disorder in graphene. Phys. Rev. B 2008, 77, 115109.

    Article  Google Scholar 

  23. Poljak, M.; Song, E. B.; Wang, M. S.; Suligoj, T.; Wang, K. L. Influence of edge defects, vacancies, and potential fluctuations on transport properties of extremely scaled graphene nanoribbons. IEEE Trans. Electron Devices 2012, 59, 3231–3238.

    Article  Google Scholar 

  24. Poljak, M.; Wang, K. L.; Suligoj, T. Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons. Solid-State Electron. 2015, 108, 67–74.

    Article  Google Scholar 

  25. Djavid, N.; Khaliji, K.; Tabatabaei, S. M.; Pourfath, M. A computational study on the electronic transport properties of ultranarrow disordered zigzag graphene nanoribbons. IEEE Trans. Electron Devices 2014, 61, 23–29.

    Article  Google Scholar 

  26. Poljak, M.; Wang, M.; Song, E. B.; Suligoj, T.; Wang, K. L. Disorder-induced variability of transport properties of sub-5 nm-wide graphene nanoribbons. Solid-State Electron. 2013, 84, 103–111.

    Article  Google Scholar 

  27. Yazdanpanah, A.; Pourfath, M.; Fathipour, M.; Kosina, H.; Selberherr, S. A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Trans. Electron Devices 2012, 59, 433–440.

    Article  Google Scholar 

  28. Niquet, Y.-M.; Nguyen, V.-H.; Triozon, F.; Duchemin, I.; Nier, O.; Rideau, D. Quantum calculations of the carrier mobility: Methodology, Matthiessen’s rule, and comparison with semiclassical approaches. J. Appl. Phys. 2014, 115, 054512.

    Article  Google Scholar 

  29. Lundstrom, M. Fundamentals of Carrier Transport; Cambridge University Press: New York, 2000.

    Book  Google Scholar 

  30. Esseni, D.; Palestri, P.; Selmi, L. Nanoscale MOS Transistors: Semi-Classical Transport and Applications; Cambridge University Press: New York, 2011.

    Book  Google Scholar 

  31. Fang, T.; Konar, A.; Xing, H. L.; Jena, D. Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Phys. Rev. B 2008, 78, 205403.

    Article  Google Scholar 

  32. Betti, A.; Fiori, G.; Iannaccone, G. Atomistic investigation of low-field mobility in graphene nanoribbons. IEEE Trans. Electron Devices 2011, 58, 2824–2830.

    Article  Google Scholar 

  33. Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

    Article  Google Scholar 

  34. Poljak, M.; Suligoj, T.; Wang, K. L. Influence of substrate type and quality on carrier mobility in graphene nanoribbons. J. Appl. Phys. 2013, 114, 053701.

    Article  Google Scholar 

  35. Skotnicki, T.; Fenouillet-Beranger, C.; Gallon, C.; Boeuf, F.; Monfray, S.; Payet, F.; Pouydebasque, A.; Szczap, M.; Farcy, A.; Arnaud, F. et al. Innovative materials, devices, and CMOS technologies for low-power mobile multimedia. IEEE Trans Electron Devices 2008, 55, 96–130.

    Article  Google Scholar 

  36. Uchida, K.; Watanabe, H.; Kinoshita, A.; Koga, J.; Numata, T.; Takagi, S. Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. In Technical Digest of International Electron Devices Meeting 2002 (IEDM 2002), San Francisco, CA,USA, 2002, pp 47–50.

    Google Scholar 

  37. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  38. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  39. Datta, S. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct. 2000, 28, 253–278.

    Article  Google Scholar 

  40. Datta, S. Quantum Transport: Atom to Transistor, 2nd ed.; Cambridge University Press: New York, 2005.

    Book  Google Scholar 

  41. Rudenko, A. N.; Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 2014, 89, 201408.

    Article  Google Scholar 

  42. Golizadeh-Mojarad, R.; Datta, S. Nonequilibrium Green’s function based models for dephasing in quantum transport. Phys. Rev. B 2007, 75, 081301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Poljak.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poljak, M., Suligoj, T. Immunity of electronic and transport properties of phosphorene nanoribbons to edge defects. Nano Res. 9, 1723–1734 (2016). https://doi.org/10.1007/s12274-016-1066-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1066-1

Keywords

Navigation