Skip to main content
Log in

Facile synthesis of magnetic–plasmonic nanocomposites as T 1 MRI contrast enhancing and photothermal therapeutic agents

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanocomposites combining magnetic and plasmonic components have received widespread attention in recent years due to their potential applications in biomedical research. Herein, we describe a facile method for growing small iron oxide nanoparticles on various plasmonic core materials with different shapes and surfaces by utilizing a polypyrrole interlayer. By focusing on Au nanorod@polypyrrole@iron oxide (Au NR@PPy@Fe x O) nanocomposites, we show that these systems exhibit a low r 2/r 1 ratio of 4.8, making them efficient T 1 positive contrast-enhancing agents for magnetic resonance imaging (MRI). Moreover, we show that the nanocomposites are excellent photothermal agents in the second near infrared region, with high photothermal conversion efficiency, reaching up to 46%. In addition, the Au NR@PPy@Fe x O nanocomposites show very low cytotoxicity. In summary, the present results highlight the great potential of the synthetic method and the nanocomposites developed in this study for T 1 MRI and/or infrared thermal imaging-guided photothermal cancer therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, W. J.; Li, Y. S.; Niu, D. C.; Ma, Z.; Gu, J. L.; Chen, Y.; Zhao, W. R.; Liu, X. H.; Liu, C. S.; Shi, J. L. Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 2011, 23, 5392–5397.

    Article  Google Scholar 

  2. Xu, C. J.; Wang, B. D.; Sun, S. H. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009, 131, 4216–4217.

    Article  Google Scholar 

  3. Bardhan, R.; Chen, W. X.; Bartels, M.; Perez-Torres, C.; Botero, M. F.; McAninch, R. W.; Contreras, A.; Schiff, R.; Pautler, R. G.; Halas, N. J. et al. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett. 2010, 10, 4920–4928.

    Article  Google Scholar 

  4. Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.

    Article  Google Scholar 

  5. Wang, C. G.; Chen, J. J.; Talavage, T.; Irudayaraj, J. Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew. Chem., Int. Ed. 2009, 48, 2759–2763.

    Article  Google Scholar 

  6. Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896.

    Article  Google Scholar 

  7. Larson, T. A.; Bankson, J.; Aaron, J.; Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007, 18, 325101.

    Article  Google Scholar 

  8. Ma, L. L.; Feldman, M. D.; Tam, J. M.; Paranjape, A. S.; Cheruku, K. K.; Larson, T. A.; Tam, J. O.; Ingram, D. R.; Paramita, V.; Villard, J. W. et al. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 2009, 3, 2686–2696.

    Article  Google Scholar 

  9. El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834.

    Article  Google Scholar 

  10. Wu, X.; Ming, T.; Wang, X.; Wang, P. N.; Wang, J. F.; Chen, J. Y. High-photoluminescence-yield gold nanocubes: For cell imaging and photothermal therapy. ACS Nano 2010, 4, 113–120.

    Article  Google Scholar 

  11. Novo, C.; Funston, A. M.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Spectroscopy and high-resolution microscopy of single nanocrystals by a focused ion beam registration method. Angew. Chem., Int. Ed. 2007, 46, 3517–3520.

    Article  Google Scholar 

  12. Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 2011, 7, 169–183.

    Article  Google Scholar 

  13. Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811–817.

    Article  Google Scholar 

  14. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554.

    Article  Google Scholar 

  15. Weissleder, R.; Pittet, M. J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589.

    Article  Google Scholar 

  16. Na, H. B.; Hyeon, T. Nanostructured T 1 MRI contrast agents. J. Mater. Chem. 2009, 19, 6267–6273.

    Article  Google Scholar 

  17. Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.

    Article  Google Scholar 

  18. Jun, Y. W.; Huh, Y. M.; Choi, J. S.; Lee, J. H.; Song, H. T.; Kim, S.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127, 5732–5733.

    Article  Google Scholar 

  19. Jun, Y.-W.; Seo, J.-W.; Cheon, A. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 2008, 41, 179–189.

    Article  Google Scholar 

  20. Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391.

    Article  Google Scholar 

  21. Gao, J. H.; Liang, G. L.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X. X.; Wu, E. X.; Xu, B. Multifunctional yolk–shell nanoparticles: A potential MRI contrast and anticancer agent. J. Am. Chem. Soc. 2008, 130, 11828–11833.

    Article  Google Scholar 

  22. Lee, N.; Kim, H.; Choi, S. H.; Park, M.; Kim, D.; Kim, H.-C.; Choi, Y.; Lin, S.; Kim, B. H.; Jung, H. S. et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc. Natl. Acad. Sci. USA 2011, 108, 2662–2667.

    Article  Google Scholar 

  23. Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512–523.

    Article  Google Scholar 

  24. Hifumi, H.; Yamaoka, S.; Tanimoto, A.; Citterio, D.; Suzuki, K. Gadolinium-based hybrid nanoparticles as a positive MRcontrast agent. J. Am. Chem. Soc. 2006, 128, 15090–15091.

    Article  Google Scholar 

  25. Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K.-S.; Na, H. B.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. H.; Baik, S.-I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T 1 magnetic resonance imaging contrast agent. Adv. Mater. 2009, 21, 4467–4471.

    Article  Google Scholar 

  26. Bridot, J.-L.; Faure, A.-C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J.-L.; Vander Elst, L. et al. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 2007, 129, 5076–5084.

    Article  Google Scholar 

  27. Rieter, W. J.; Kim, J. S.; Taylor, K. M. L.; An, H.; Lin, W. L.; Tarrant, T.; Lin, W. B. Hybrid silica nanoparticles for multimodal imaging. Angew. Chem., Int. Ed. 2007, 46, 3680–3682.

    Article  Google Scholar 

  28. Na, H. B.; Lee, J. H.; An, K.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D.-H.; Kim, S. T.; Kim, S.-H.; Kim, S.-W. et al. Development of a T 1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 5397–5401.

    Article  Google Scholar 

  29. Choi, S.-H.; Na, H. B.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M.-H.; Moon, J.; Son, J. S.; Song, I. C. et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573–15580.

    Article  Google Scholar 

  30. An, K.; Kwon, S. G.; Park, M.; Na, H. B.; Baik, S.-I.; Yu, J. H.; Kim, D.; Son, J. S.; Kim, Y. W.; Song, I. C. et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 2008, 8, 4252–4258.

    Article  Google Scholar 

  31. Yang, H.; Zhuang, Y. M.; Hu, H.; Du, X. X.; Zhang, C. X.; Shi, X. Y.; Wu, H. X.; Yang, S. P. Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv. Funct. Mater. 2010, 20, 1733–1741.

    Article  Google Scholar 

  32. Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M. T.; Quinones-Hinojosa, A. et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 2011, 133, 2955–2961.

    Article  Google Scholar 

  33. Penfield, J. G.; Reilly, R. F., What nephrologists need to know about gadolinium. Nat. Clin. Pract. Nephrol. 2007, 3, 654–668.

    Article  Google Scholar 

  34. Limbach, L. K.; Wick, P.; Manser, P.; Grass, R. N.; Bruinink, A.; Stark, W. J. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158–4163.

    Article  Google Scholar 

  35. Bardhan, R.; Chen, W. X.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L. L.; Morosan, E.; Pautler, R. G.; Joshi, A.; Halas, N. J. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 2009, 19, 3901–3909.

    Article  Google Scholar 

  36. Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J.-S.; Kim, S. K.; Cho, M.-H. et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem., Int. Ed. 2006, 45, 7754–7758.

    Article  Google Scholar 

  37. Wang, L. Y.; Bai, J. W.; Li, Y. J.; Huang, Y. Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew. Chem., Int. Ed. 2008, 47, 2439–2442.

    Article  Google Scholar 

  38. Melancon, M. P.; Lu, W.; Zhong, M.; Zhou, M.; Liang, G.; Elliott, A. M.; Hazle, J. D.; Myers, J. N.; Li, C.; Stafford, R. J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 2011, 32, 7600–7608.

    Article  Google Scholar 

  39. Ji, X.; Shao, R.; Elliott, A. M.; Stafford, R. J.; Esparza-Coss, E.; Bankson, J. A.; Liang, G.; Luo, Z.-P.; Park, K.; Markert, J. T. et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MRimaging and photothermal therapy. J. Phys. Chem. C 2007, 111, 6245–6251.

    Article  Google Scholar 

  40. Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2-x S core–shell nanoparticles for dualmodal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577.

    Article  Google Scholar 

  41. Roch, A.; Muller, R. N.; Gillis, P. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 1999, 110, 5403–5411.

    Article  Google Scholar 

  42. Taboada, E.; Rodriguez, E.; Roig, A.; Oró, J.; Roch, A.; Muller, R. N. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T 1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 2007, 23, 4583–4588.

    Article  Google Scholar 

  43. Tromsdorf, U. I.; Bruns, O. T.; Salmen, S. C.; Beisiegel, U.; Weller, H. A highly effective, nontoxic T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009, 9, 4434–4440.

    Article  Google Scholar 

  44. Hu, F. Q.; MacRenaris, K. W.; Waters, E. A.; Liang, T. Y.; Schultz-Sikma, E. A.; Eckermann, A. L.; Meade, T. J. Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging. J. Phys. Chem. C 2009, 113, 20855–20860.

    Article  Google Scholar 

  45. Shen, L.-H.; Bao, J.-F.; Wang, D.; Wang, Y.-X.; Chen, Z.-W.; Ren, L.; Zhou, X.; Ke, X.-B.; Chen, M.; Yang, A.-Q. One-step synthesis of monodisperse, water-soluble ultrasmall Fe3O4 nanoparticles for potential bio-application. Nanoscale 2013, 5, 2133–2141.

    Article  Google Scholar 

  46. Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

    Article  Google Scholar 

  47. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

    Article  Google Scholar 

  48. Li, J.; Wu, J.; Zhang, X.; Liu, Y.; Zhou, D.; Sun, H. Z.; Zhang, H.; Yang, B. Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride. J. Phys. Chem. C 2011, 115, 3630–3637.

    Article  Google Scholar 

  49. Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

    Article  Google Scholar 

  50. Lie, S. Q.; Wang, D. M.; Gao, M. X.; Huang, C. Z. Controllable copper deficiency in Cu2-x Se nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence. Nanoscale 2014, 6, 10289–10296.

    Article  Google Scholar 

  51. Xing, S. X.; Tan, L. H.; Yang, M. X.; Pan, M.; Lv, Y. B.; Tang, Q. H.; Yang, Y. H.; Chen, H. Y. Highly controlled core/shell structures: Tunable conductive polymer shells on gold nanoparticles and nanochains. J. Mater. Chem. 2009, 19, 3286–3291.

    Article  Google Scholar 

  52. Lin, M.; Guo, C. R.; Li, J.; Zhou, D.; Liu, K.; Zhang, X.; Xu, T. S.; Zhang, H.; Wang, L. P.; Yang, B. Polypyrrolecoated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS Appl. Mater. Interfaces 2014, 6, 5860–5868.

    Article  Google Scholar 

  53. Liu, Z. M.; Ye, B. G.; Jin, M.; Chen, H. L.; Zhong, H. Q.; Wang, X. P.; Guo, Z. Y. Dye-free near-infrared surfaceenhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 2015, 7, 6754–6761.

    Article  Google Scholar 

  54. Zha, Z. B.; Yue, X. L.; Ren, Q. S.; Dai, Z. F. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25, 777–782.

    Article  Google Scholar 

  55. Wang, Q.; Wang, J. D.; Lv, G.; Wang, F.; Zhou, X. K.; Hu, J. Q.; Wang, Q. G. Facile synthesis of hydrophilic polypyrrole nanoparticles for photothermal cancer therapy. J. Mater. Sci. 2014, 49, 3484–3490.

    Article  Google Scholar 

  56. Hong, J.-Y.; Yoon, H.; Jang, J. Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: A light-scattering analysis. Small 2010, 6, 679–686.

    Article  Google Scholar 

  57. Feng, W.; Zhou, X. J.; Nie, W.; Chen, L.; Qiu, K. X.; Zhang, Y. Z.; He, C. L. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: An in vitro study. ACS Appl. Mater. Interfaces 2015, 7, 4354–4367.

    Article  Google Scholar 

  58. Tian, Q. W.; Wang, Q.; Yao, K. X.; Teng, B. Y.; Zhang, J. Z.; Yang, S. P.; Han, Y. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 2014, 10, 1063–1068.

    Article  Google Scholar 

  59. Vaitkuviene, A.; Kaseta, V.; Voronovic, J.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J. Hazard. Mater. 2013, 250-251, 167–174.

    Article  Google Scholar 

  60. Stewart, E. M.; Liu, X.; Clark, G. M.; Kapsa, R. M. I.; Wallace, G. G. Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. Acta Biomater. 2012, 8, 194–200.

    Article  Google Scholar 

  61. Ramanaviciene, A.; Kausaite, A.; Tautkus, S.; Ramanavicius, A. Biocompatibility of polypyrrole particles: An in-vivo study in mice. J. Pharm. Pharmacol. 2007, 59, 311–315.

    Article  Google Scholar 

  62. Peng, Y.-K.; Liu, C.-L.; Chen, H.-C.; Chou, S.-W.; Tseng, W.-H.; Tseng, Y.-J.; Kang, C.-C.; Hsiao, J.-K.; Chou, P.-T. Antiferromagnetic iron nanocolloids: A new generation in vivo T 1 MRI contrast agent. J. Am. Chem. Soc. 2013, 135, 18621–18628.

    Article  Google Scholar 

  63. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

    Article  Google Scholar 

  64. Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Ding, X. & Jiang, J. Facile synthesis of magnetic–plasmonic nanocomposites as T 1 MRI contrast enhancing and photothermal therapeutic agents. Nano Res. 9, 787–799 (2016). https://doi.org/10.1007/s12274-015-0958-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0958-9

Keywords

Navigation