Skip to main content
Log in

Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Platinum nanoparticles (NPs) are reported to mimic various antioxidant enzymes and thus may produce a positive biological effect by reducing reactive oxygen species (ROS) levels. In this manuscript, we report Pt NPs as an enzyme mimic of ferroxidase by depositing platinum nanodots on gold nanorods (Au@Pt NDRs). Au@Pt NDRs show pH-dependent ferroxidase-like activity and have higher activity at neutral pH values. Cytotoxicity results with human cell lines (lung adenocarcinoma A549 and normal bronchial epithelial cell line HBE) show that Au@Pt NDRs are taken up into cells via endocytosis and translocate into the endosome/lysosome. Au@Pt NDRs have good biocompatibility at NDR particle concentrations lower than 0.15 nΜ. However, in the presence of H2O2, lysosomelocated NDRs exhibit peroxidase-like activity and therefore increase cytotoxicity. In the presence of Fe2+, the ferroxidase-like activity of the NDRs protects cells from oxidative stress by consuming H2O2. Thorough consideration should be given to this behavior when employing Au@Pt NDRs in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  2. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

    Article  Google Scholar 

  3. He, W. W.; Wamer, W.; Xia, Q. S.; Yin, J. J.; Fu, P. P. Enzyme-like activity of nanomaterials. J. Environ. Sci. Health C 2014, 32, 186–211.

    Article  Google Scholar 

  4. Gao, L..Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  5. Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem.-Eur. J. 2010, 16, 3617–3621.

    Article  Google Scholar 

  6. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    Article  Google Scholar 

  7. Long, Y. J.; Li, Y. F.; Liu, Y.; Zheng, J. J.; Tang, J.; Huang, C. Z. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 2011, 47, 11939–11941.

    Article  Google Scholar 

  8. He, W. W.; Liu, Y.; Yuan, J. S.; Yin, J. J.; Wu, X. C.; Hu, X. N.; Zhang, K.; Liu, J. B.; Chen, C. Y.; Ji, Y. L. et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32, 1139–1147.

    Article  Google Scholar 

  9. Hu, X. N.; Saran, A.; Hou, S.; Wen, T.; Ji, Y. L.; Liu, W. Q.; Zhang, H.; He, W. W.; Yin, J.-J.; Wu, X. C. Au@PtAg core/shell nanorods: Tailoring enzyme-like activities via alloying. RSC Adv. 2013, 3, 6095–6105.

    Article  Google Scholar 

  10. He, W. W.; Zhou, Y. T.; Wamer, W. G.; Boudreau, M. D.; Yin, J. J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012, 33, 7547–7555.

    Article  Google Scholar 

  11. Li, J. N.; Liu, W. Q.; Wu, X. C.; Gao, X. F. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015, 48, 37–44.

    Article  Google Scholar 

  12. He, W. W.; Zhou, Y. T.; Wamer, W. G.; Hu, X. N.; Wu, X. C.; Zheng, Z.; Boudreau, M. D.; Yin, J. J. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2012, 34, 765–773.

    Article  Google Scholar 

  13. Zheng, C.; Zheng, A.-X.; Liu, B.; Zhang, X.-L.; He, Y.; Li, J.; Yang, H.-H.; Chen, G. N. One-pot synthesized DNAtemplated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem. Commun. 2014, 50, 13103–13106.

    Article  Google Scholar 

  14. Lin, Y. H.; Li, Z. H.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Mesoporous silica encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 2013, 34, 2600–2610.

    Article  Google Scholar 

  15. Tian, Z. M.; Li, J.; Zhang, Z. Y.; Gao, W.; Zhou, X. M.; Qu, Y. Q. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 2015, 59, 116–124.

    Article  Google Scholar 

  16. Li, L.; Zhang, L.; Carmona, U.; Knez, M. Semi-artificial and bioactive ferroxidase with nanoparticles as the active sites. Chem. Commun. 2014, 50, 8021–8023.

    Article  Google Scholar 

  17. Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv. Mater. 2013, 25, 132–136.

    Article  Google Scholar 

  18. Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

    Article  Google Scholar 

  19. Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.

    Article  Google Scholar 

  20. Kajita, M.; Hikosaka, K.; Iitsuka, M.; Kanayama, A.; Toshima, N.; Miyamoto, Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic. Res. 2007, 41, 615–626.

    Article  Google Scholar 

  21. Hamasaki, T.; Kashiwagi, T.; Imada, T.; Nakamichi, N.; Aramaki, S.; Toh, K.; Morisawa, S.; Shimakoshi, H.; Hisaeda, Y.; Shirahata, S. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 2008, 24, 7354–7364.

    Article  Google Scholar 

  22. Kim, J.; Takahashi, M.; Shimizu, T.; Shirasawa, T.; Kajita, M.; Kanayama, A.; Miyamoto, Y. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing Dev. 2008, 129, 322–331.

    Article  Google Scholar 

  23. Watanabe, A.; Kajita, M.; Kim, J.; Kanayama, A.; Takahashi, K.; Mashino, T.; Miyamoto, Y. In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 2009, 20, 455105.

    Article  Google Scholar 

  24. Onizawa, S.; Aoshiba, K.; Kajita, M.; Miyamoto, Y.; Nagai, A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm. Pharmacol. Ther. 2009, 22, 340–349.

    Article  Google Scholar 

  25. Zhang, L. B.; Laug, L. D.; Münchgesang, W.; Pippel, E.; Gösele, U.; Brandsch, M.; Knez, M. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano. Lett. 2010, 10, 219–223.

    Article  Google Scholar 

  26. Guo, S. J.; Fang, Y. X.; Dong, S. J.; Wang, E. K. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: Spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C 2007, 111, 17104–17109.

    Article  Google Scholar 

  27. Wang, S. Y.; Kristian, N.; Jiang, S. P.; Wang, X. Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochem. Commun. 2008, 10, 961–964.

    Article  Google Scholar 

  28. Feng, L. L.; Wu, X. C.; Ren, L. R.; Xiang, Y. J.; He, W. W.; Zhang, K.; Zhou, W. Y.; Xie, S. S. Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth. Chem.-Eur. J. 2008, 14, 9764–9771.

    Article  Google Scholar 

  29. Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758.

    Article  Google Scholar 

  30. Gole, A.; Murphy, C. J. Polyelectrolyte-coated gold nanorods: Synthesis, characterization and immobilization. Chem. Mater. 2005, 17, 1325–1330.

    Article  Google Scholar 

  31. Qiu, Y.; Liu, Y.; Wang, L. M.; Xu, L. G.; Bai, R.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Li, Y. F.; Chen, C. Y. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010, 31, 7606–7619.

    Article  Google Scholar 

  32. Zaitsev, V. N.; Zaitseva, I.; Papiz, M.; Lindley, P. F. An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multicopper oxidase in the plasma. J. Biol. Inorg. Chem. 1999, 4, 579–587.

    Article  Google Scholar 

  33. Bou-Abdallah, F.; Arosio, P.; Levi, S.; Janus-Chandler, C.; Chasteen, N. D. Defining metal ion inhibitor interactions with recombinant human H- and L-chain ferritins and sitedirected variants: An isothermal titration calorimetry study. J. Biol. Inorg. Chem. 2003, 8, 489–497.

    Google Scholar 

  34. Liu, J. B.; Hu, X. N.; Hou, S.; Wen, T.; Liu, W. Q.; Zhu, X.; Wu, X. C. Screening of inhibitors for oxidase mimics of Au@Pt nanorods by catalytic oxidation of OPD. Chem. Commun. 2011, 47, 10981–10983.

    Article  Google Scholar 

  35. Quarles, C. D. Jr.; Brumaghim, J. L.; Marcus, R. K. Simultaneous multiple element detection by particle beam/hollow cathode-optical emission spectroscopy as a tool for metallomic studies: Determinations of metal binding with apo-transferrin. Metallomics 2010, 2, 154–161.

    Article  Google Scholar 

  36. Nuttleman, P. R.; Roberts, R. M. Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity. J. Biol. Chem. 1990, 265, 12192–12199.

    Google Scholar 

  37. Kolesar, J. M.; Schelman, W. R.; Geiger, P. G.; Holen, K. D.; Traynor, A. M.; Alberti, D. B.; Thomas, J. P.; Chitambar, C. R.; Wilding, G.; Antholine, W. E. Electron paramagnetic resonance study of peripheral blood mononuclear cells from patients with refractory solid tumors treated with Triapine®. J. Inorg. Biochem. 2008, 102, 693–698.

    Article  Google Scholar 

  38. Wang, L. M.; Liu, Y.; Li, W.; Jiang, X. M.; Ji, Y. L.; Wu, X. C.; Xu, L. G.; Qiu, Y.; Zhao, K.; Wei, T. T. et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano. Lett. 2011, 11, 772–780.

    Article  Google Scholar 

  39. Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L.; Song M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

    Article  Google Scholar 

  40. Kohgo, Y.; Ikuta, K.; Ohtake, T.; Torimoto, Y.; Kato, J. Body iron metabolism and pathophysiology of iron overload. Int. J. Hematol. 2008, 88, 7–15.

    Article  Google Scholar 

  41. Mukhopadhyay, C. K.; Attieh, Z. K.; Fox, P. L. Role of ceruloplasmin in cellular iron uptake. Science 1998, 279, 714–717.

    Article  Google Scholar 

  42. Harris, Z. L.; Takahashi, Y.; Miyajima, H.; Serizawa, M.; MacGillivray, R. T.; Gitlin, J. D. Aceruloplasminemia: Molecular characterization of this disorder of iron metabolism. Proc. Natl. Acad. Sci. USA 1995, 92, 2539–2543.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjie Yin, Chunying Chen or Xiaochun Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, X., Wang, L. et al. Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 8, 4024–4037 (2015). https://doi.org/10.1007/s12274-015-0904-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0904-x

Keywords

Navigation