Skip to main content
Log in

Atomic force microscopy analysis of orientation and bending of oligodeoxynucleotides in polypod-like structured DNA

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We previously demonstrated that polypod-like structured DNA, or polypodna, constructed with three or more oligodeoxynucleotides (ODNs), is efficiently taken up by immune cells such as dendritic cells and macrophages, depending on its structural complexity. The ODNs comprising the polypodna should bend to form the polypod-like structure, and may do so by adopting either a bendtype conformation or a cross-type conformation. Here, we tried to elucidate the orientation and bending of ODNs in polypodnas using atomic force microscopy (AFM). We designed two types of pentapodnas (i.e., a polypodna with five pods) using 60- to 88-base ODNs, which were then immobilized on DNA origami frames. AFM imaging showed that the ODNs in the pentapodna adopted bend-type conformations. Tetrapodna and hexapodna also adopted bend-type conformations when they were immobilized on frames under unconstrained conditions. These findings provide useful information toward the coherent design of, and the structure–activity relationships for, a variety of DNA nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Um, S. H.; Lee, J. B.; Park, N.; Kwon, S. Y.; Umbach, C. C.; Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 2006, 5, 797–801.

    Article  Google Scholar 

  2. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

    Article  Google Scholar 

  3. He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 2008, 452, 198–201.

    Article  Google Scholar 

  4. Smith, D; Schüller, V; Engst, C; Rädler, J; Liedl, T. Nucleic acid nanostructures for biomedical applications. Nanomedicine 2013, 8, 105–121.

    Article  Google Scholar 

  5. Um, S. H.; Lee, J. B.; Kwon, S. Y.; Li, Y. G.; Luo, D. Dendrimer-like DNA-based fluorescence nanobarcodes. Nat. Protoc. 2006, 1, 995–1000.

    Article  Google Scholar 

  6. Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 2012, 338, 1177–1183.

    Article  Google Scholar 

  7. Rattanakiat, S.; Nishikawa, M.; Funabashi, H.; Luo, D.; Takakura, Y. The assembly of a short linear natural cytosinephosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 2009, 30, 5701–5706.

    Article  Google Scholar 

  8. Mohri, K.; Nishikawa, M.; Takahashi, N.; Shiomi, T.; Matsuoka, N.; Ogawa, K.; Endo, M.; Hidaka, K.; Sugiyama, H.; Takahashi, Y. et al. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano 2012, 6, 5931–5940.

    Article  Google Scholar 

  9. Wemmer, D. E.; Wand, A. J.; Seeman, N. C.; Kallenbach, N. R. NMR analysis of DNA junctions: Imino proton NMR studies of individual arms and intact junction. Biochemistry 1985, 24, 5745–5749.

    Article  Google Scholar 

  10. Ortiz-Lombardía, M.; González, A.; Eritja, R.; Aymamí, J.; Azorín, F.; Coll, M. Crystal structure of a DNA Holliday junction. Nat. Struct. Biol. 1999, 6, 913–917.

    Article  Google Scholar 

  11. Lilley, D. M. Structures of helical junctions in nucleic acids. Q Rev. Biophys. 2000, 33, 109–159.

    Article  Google Scholar 

  12. Li, Y. G.; Tseng, Y. D.; Kwon, S. Y.; d’Espaux, L.; Bunch, J. S.; McEuen, P. L.; Luo, D. Controlled assembly of dendrimer-like DNA. Nat. Mater. 2004, 3, 38–42.

    Article  Google Scholar 

  13. Mizuno, R.; Haruta, H.; Morii, T.; Okada, T.; Asakawa, T.; Hayashi, K. Synthesis and AFM visualization of DNA nanostructures. Thin Solid Films 2004, 459–465.

    Google Scholar 

  14. Lyubchenko, Y. L.; Shlyakhtenko, L. S.; Ando, T. Imaging of nucleic acids with atomic force microscopy. Methods 2011, 54, 274–283.

    Article  Google Scholar 

  15. Nishikawa, M.; Mizuno, Y.; Mohri, K.; Matsuoka, N.; Rattanakiat, S.; Takahashi, Y.; Funabashi, H.; Luo, D.; Takakura, Y. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials 2011, 32, 488–494.

    Article  Google Scholar 

  16. Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J. Am. Chem. Soc. 2010, 132, 1592–1597.

    Article  Google Scholar 

  17. Suzuki, Y.; Endo, M.; Katsuda, Y.; Ou, K.; Hidaka, K.; Sugiyama, H. DNA origami based visualization system for studying site-specific recombination events. J. Am. Chem. Soc. 2014, 136, 211–218.

    Article  Google Scholar 

  18. Murchie, A. I. H.; Clegg, R. M.; von Krtzing, E.; Duckett, D. R.; Diekmann, S.; Lilley, D. M. J. Fluorescence energy transfer shows that the four-way DNA junction is a righthanded cross of antiparallel molecules. Nature 1989, 341, 763–766.

    Article  Google Scholar 

  19. Eichman, B. F.; Vargason, J. M.; Mooers, B. H. M.; Ho, P. S. The Holliday junction in an inverted repeat DNA sequence: Sequence effects on the structure of four-way junctions. Proc. Natl. Acad. Sci. USA 2000, 97, 3971–3976.

    Article  Google Scholar 

  20. Sha, R.; Liu, F.; Seeman, N. C. Atomic force microscopic measurement of the interdomain angle in symmetric Holliday junctions. Biochemistry 2002, 41, 5950–5955.

    Article  Google Scholar 

  21. Peters 3rd, J. P.; Maher, L. J. DNA curvature and flexibility in vitro and in vivo. Q Rev. Biophys. 2010, 43, 23–63.

    Article  Google Scholar 

  22. Vafabakhsh, R.; Ha, T. Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 2012, 337, 1097–1101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makiya Nishikawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiomi, T., Tan, M., Takahashi, N. et al. Atomic force microscopy analysis of orientation and bending of oligodeoxynucleotides in polypod-like structured DNA. Nano Res. 8, 3764–3771 (2015). https://doi.org/10.1007/s12274-015-0875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0875-y

Keywords

Navigation