Skip to main content
Log in

Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Incorporating pentagons and heptagons into the hexagonal networks of pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing positive and negative curvature, respectively. Some typical so-made CNT-based nanostructures are reviewed in this article, including zero-dimensional toroidal CNTs, and one-dimensional kinked and coiled CNTs. Due to the presence of non-hexagonal rings and curved geometries, such nanostructures possess rather different structural, physical and chemical properties from their pristine CNT counterparts, which are reviewed comprehensively in this article. Additionally, their synthesis, modelling studies, and potential applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichihashi, T.; Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992, 356, 776–778.

    Google Scholar 

  2. Ball, P. Needles in a carbon haystack. Nature 1991, 354, 18.

    Google Scholar 

  3. Charlier, J. C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069.

    Google Scholar 

  4. Liu, J.; Dai, H. J.; Hafner, J. H.; Colbert, D. T.; Smalley, R. E.; Tans, S. J.; Dekker, C. Fullerene “crop circles”. Nature 1997, 385, 780–781.

    Google Scholar 

  5. Falvo, M.; Clary, G.; Taylor, R.; Chi, V.; Brooks, F.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584.

    Google Scholar 

  6. Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Carbon nanotube intramolecular junctions. Nature 1999, 402, 273–276.

    Google Scholar 

  7. Terrones, M.; Terrones, H.; Banhart, F.; Charlier, J. C.; Ajayan, P. M. Coalescence of single-walled carbon nanotubes. Science 2000, 288, 1226–1229.

    Google Scholar 

  8. Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 1994, 265, 635–639.

    Google Scholar 

  9. Zhang, X. B.; Zhang, X. F.; Bernaerts, D.; van Tendeloo, G.; Amelinckx, S.; van Landuyt, J.; Ivanov, V.; Nagy, J. B.; Ph, L.; Lucas, A. A. The texture of catalytically grown coil-shaped carbon nanotubules. Europhys. Lett. 1994, 27, 141–146.

    Google Scholar 

  10. Martel, R.; Shea, H. R.; Avouris, P. Rings of single-walled carbon nanotubes. Nature 1999, 398, 299.

    Google Scholar 

  11. Martel, R.; Shea, H. R.; Avouris, P. Ring formation in single-wall carbon nanotubes. J. Phys. Chem. B 1999, 103, 7551–7556.

    Google Scholar 

  12. Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Ring closure of carbon nanotubes. Science 2001, 293, 1299–1301.

    Google Scholar 

  13. Geng, J.; Ko, Y. K.; Youn, S. C.; Kim, Y.-H.; Kim, S. A.; Jung, D.-H.; Jung, H.-T. Synthesis of SWNT rings by noncovalent hybridization of porphyrins and single-walled carbon nanotubes. J. Phys. Chem. C 2008, 112, 12264–12271.

    Google Scholar 

  14. Song, L.; Ci, L. J.; Sun, L. F.; Jin, C.; Liu, L.; Ma, W.; Liu, D.; Zhao, X.; Luo, S.; Zhang, Z.; et al. Large-scale synthesis of rings of bundled single-walled carbon nanotubes by floating chemical vapor deposition. Adv. Mater. 2006, 18, 1817–1821.

    Google Scholar 

  15. Zhou, Z.; Wan, D.; Bai, Y.; Dou, X.; Song, L.; Zhou, W.; Mo, Y.; Xie, S. Ring formation from the direct floating catalytic chemical vapor deposition. Physica E 2006, 33, 24–27.

    Google Scholar 

  16. AuBuchon, J. F.; Chen, L.-H.; Gapin, A. I.; Kim, D.-W.; Daraio, C.; Jin, S. Multiple sharp bendings of carbon nanotubes during growth to produce zigzag morphology. Nano Lett. 2004, 4, 1781–1784.

    Google Scholar 

  17. AuBuchon, J. F.; Chen, L.-H.; Jin, S. Control of carbon capping for regrowth of aligned carbon nanotubes. J. Phys. Chem. B 2005, 109, 6044–6048.

    Google Scholar 

  18. Hertel, T.; Martel, R.; Avouris, P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 1998, 102, 910–915.

    Google Scholar 

  19. Postma, H. W. C.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 2001, 293, 76–79.

    Google Scholar 

  20. Gao, R.; Wang, Z. L.; Fan, S. Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes. J. Phys. Chem. B 2000, 104, 1227–1234.

    Google Scholar 

  21. Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomicstep-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Edit. 2004, 43, 6140–6143.

    Google Scholar 

  22. Pan, L.; Hayashida, T.; Zhang, M.; Nakayama, Y. Field emission properties of carbon tubule nanocoils. Jpn. J. Appl. Phys. 2001, 40, L235–L237.

    Google Scholar 

  23. Xie, J.; Mukhopadyay, K.; Yadev, J.; Varadan, V. Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes. Smart Mater. Struct. 2003, 12, 744–748.

    Google Scholar 

  24. Hou, H.; Jun, Z.; Weller, F.; Greiner, A. Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor. Chem. Mater. 2003, 15, 3170–3175.

    Google Scholar 

  25. Zhong, D. Y.; Liu, S.; Wang, E. G. Patterned growth of coiled carbon nanotubes by a template-assisted technique. Appl. Phys. Lett. 2003, 83, 4423–4425.

    Google Scholar 

  26. Tang, N.; Wen, J.; Zhang, Y.; Liu, F.; Lin, K.; Du, Y. Helical carbon nanotubes: Catalytic particle size-dependent growth and magnetic properties. ACS Nano 2010, 4, 241–250.

    Google Scholar 

  27. Thostenson, E. T.; Ren, Z.; Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.

    Google Scholar 

  28. Lin, Y.; Taylor, S.; Li, H.; Fernando, K. A. S.; Qu, L.; Wang, W.; Gu, L.; Zhou, B.; Sun, Y.-P. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 2004, 14, 527–541.

    Google Scholar 

  29. Britz, D. A.; Khlobystov, A. N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem. Soc. Rev. 2006, 35, 637–659.

    Google Scholar 

  30. Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 2009, 38, 2214–2230.

    Google Scholar 

  31. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications; Academic Press: Waltham, 1996.

    Google Scholar 

  32. Ebbesen, T. W. Carbon Nanotubes: Preparation and Properties; CRC press: Boca Raton, 1997.

    Google Scholar 

  33. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

    Google Scholar 

  34. Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes; John Wiley & Sons: Hoboken, 2008.

    Google Scholar 

  35. Lau, K. T.; Lu, M.; Hui, D. Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Compos. Part B: Eng. 2006, 37, 437–448.

    Google Scholar 

  36. Fejes, D.; Hernádi, K. A review of the properties and CVD synthesis of coiled carbon nanotubes. Materials 2010, 3, 2618–2642.

    Google Scholar 

  37. Hanus, M. J.; Harris, A. T. Synthesis, characterisation and applications of coiled carbon nanotubes. J. Nanosci. Nanotechnol. 2010, 10, 2261–2283.

    Google Scholar 

  38. Shaikjee, A.; Coville, N. J. The synthesis, properties and uses of carbon materials with helical morphology. J. Adv. Res. 2012, 3, 195–223.

    Google Scholar 

  39. Liu, L.; Zhao, J. Toroidal and coiled carbon nanotubes. In Syntheses and Applications of Carbon Nanotubes and Their Composites; Suzuki, S., Ed.; InTech: Croatia, 2013; pp. 257–282.

    Google Scholar 

  40. Ahlskog, M.; Seynaeve, E.; Vullers, R. J. M.; Van Haesendonck, C.; Fonseca, A.; Hernadi, K.; Nagy, J. B. Ring formations from catalytically synthesized carbon nanotubes. Chem. Phys. Lett. 1999, 300, 202–206.

    Google Scholar 

  41. Wang, Y.; Maspoch, D.; Zou, S.; Schatz, G. C.; Smalley, R. E.; Mirkin, C. A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 2026–2031.

    Google Scholar 

  42. Kukushkin, A. B.; Neverov, V. S.; Marusov, N. L.; Semenov, I. B.; Kolbasov, B. N.; Voloshinov, V. V.; Afanasiev, A. P.; Tarasov, A. S.; Stankevich, V. G.; Svechnikov, N. Y.; et al. Few-nanometer-wide carbon toroids in the hydrocarbon films deposited in tokamak T-10. Chem. Phys. Lett. 2011, 506, 265–268.

    Google Scholar 

  43. Wang, X.; Wang, Z.; Liu, Y. Q.; Wang, C.; Bai, C.; Zhu, D. Ring formation and fracture of a carbon nanotube. Chem. Phys. Lett. 2001, 339, 36–40.

    Google Scholar 

  44. Lyn, M. E.; He, J.; Koplitz, B. Laser-induced production of large carbon-based toroids. Appl. Surf. Sci. 2005, 246, 44–47.

    Google Scholar 

  45. Motavas, S.; Omrane, B.; Papadopoulos, C. Large-area patterning of carbon nanotube ring arrays. Langmuir 2009, 25, 4655–4658.

    Google Scholar 

  46. Chen, L.; Wang, H.; Xu, J.; Shen, X.; Yao, L.; Zhu, L.; Zeng, Z.; Zhang, H.; Chen, H. Controlling reversible elastic deformation of carbon nanotube rings. J. Am. Chem. Soc. 2011, 133, 9654–9657.

    Google Scholar 

  47. Komatsu, N.; Shimawaki, T.; Aonuma, S.; Kimura, T. Ultrasonic isolation of toroidal aggregates of single-walled carbon nanotubes. Carbon 2006, 44, 2091–2093.

    Google Scholar 

  48. Guo, A.; Fu, Y.; Guan, L.; Zhang, Z.; Wu, W.; Chen, J.; Shi, Z.; Gu, Z.; Huang, R.; Zhang, X. Spontaneously formed closed rings of single-wall carbon nanotube bundles and their physical mechanism. J. Phys. Chem. C 2007, 111, 3555–3559.

    Google Scholar 

  49. Colomer, J. F.; Henrard, L.; Flahaut, E.; Van Tendeloo, G.; Lucas, A. A.; Lambin, P. Rings of double-walled carbon nanotube bundles. Nano Lett. 2003, 3, 685–689.

    Google Scholar 

  50. Yu, H.; Zhang, Q.; Luo, G.; Wei, F. Rings of triple-walled carbon nanotube bundles. Appl. Phys. Lett. 2006, 89, 223106.

    Google Scholar 

  51. Dunlap, B. I. Connecting carbon tubules. Phys. Rev. B 1992, 46, 1933–1936.

    Google Scholar 

  52. Itoh, S.; Ihara, S.; Kitakami, J.-I. Toroidal form of carbon C360. Phys. Rev. B 1993, 47, 1703–1704.

    Google Scholar 

  53. Ihara, S.; Itoh, S.; Kitakami, J.-I. Toroidal forms of graphitic carbon. Phys. Rev. B 1993, 47, 12908–12911.

    Google Scholar 

  54. Itoh, S.; Ihara, S. Toroidal forms of graphitic carbon. II. Elongated tori. Phys. Rev. B 1993, 48, 8323–8328.

    Google Scholar 

  55. Kirby, E. C.; Mallion, R. B.; Pollak, P. Toroidal polyhexes. J. Chem. Soc., Faraday Trans. 1993, 89, 1945–1953.

    Google Scholar 

  56. Liu, L.; Jayanthi, C. S.; Wu, S. Y. Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations. Phys. Rev. B 2001, 64, 033412.

    Google Scholar 

  57. Liu, L.; Guo, G. Y.; Jayanthi, C. S.; Wu, S. Y. Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 2002, 88, 217206.

    Google Scholar 

  58. Hod, O.; Rabani, E.; Baer, R. Carbon nanotube closed-ring structures. Phys. Rev. B 2003, 67, 195408.

    Google Scholar 

  59. Cox, B. J.; Hill, J. M. New carbon molecules in the form of elbow-connected nanotori. J. Phys. Chem. C 2007, 111, 10855–10860.

    Google Scholar 

  60. Baowan, D.; Cox, B. J.; Hill, J. M. Toroidal molecules formed from three distinct carbon nanotubes. J. Math. Chem. 2008, 44, 515–527.

    Google Scholar 

  61. Liu, L.; Zhang, L.; Gao, H.; Zhao, J. Structure, energetics, and heteroatom doping of armchair carbon nanotori. Carbon 2011, 49, 4518–4523.

    Google Scholar 

  62. Itoh, S.; Ihara, S. Isomers of the toroidal forms of graphitic carbon. Phys. Rev. B 1994, 49, 13970–13974.

    Google Scholar 

  63. Nagy, C.; Nagy, K.; Diudea, M. Elongated tori from armchair DWNT. J. Math. Chem. 2009, 45, 452–459.

    Google Scholar 

  64. László, I.; Rassat, A. Toroidal and spherical fullerene-like molecules with only pentagonal and heptagonal faces. Int. J. Quantum Chem. 2001, 84, 136–139.

    Google Scholar 

  65. Ihara, S.; Itoh, S. Helically coiled and toroidal cage forms of graphitic carbon. Carbon 1995, 33, 931–939.

    Google Scholar 

  66. Taşcı, E.; Yazgan, E.; Malcıoğlu, O. B.; Erkoç, Ş. Stability of carbon nanotori under heat treatment: Molecular-dynamics simulations. Fullerenes Nanotubes Carbon Nanostruct. 2005, 13, 147–154.

    Google Scholar 

  67. Chen, C.; Chang, J.-G.; Ju, S.-P.; Hwang, C.-C. Thermal stability and morphological variation of carbon nanorings of different radii during the temperature elevating process: A molecular dynamics simulation study. J. Nanoparticle Res. 2011, 13, 1995–2006.

    Google Scholar 

  68. Yang, L.; Chen, J.; Dong, J. Stability of single-wall carbon nanotube tori. Physica Status Solidi B 2004, 241, 1269–1273.

    Google Scholar 

  69. Feng, C.; Liew, K. M. Energetics and structures of carbon nanorings. Carbon 2009, 47, 1664–1669.

    Google Scholar 

  70. Liu, P.; Zhang, Y. W.; Lu, C. Structures and stability of defect-free multiwalled carbon toroidal rings. J. Appl. Phys. 2005, 98, 113522.

    Google Scholar 

  71. Han, J. Energetics and structures of fullerene crop circles. Chem. Phys. Lett. 1998, 282, 187–191.

    Google Scholar 

  72. Meunier, V.; Lambin, P.; Lucas, A. A. Atomic and electronic structures of large and small carbon tori. Phys. Rev. B 1998, 57, 14886–14890.

    Google Scholar 

  73. Chang, I.; Chou, J.-W. A molecular analysis of carbon nanotori formation. J. Appl. Phys. 2012, 112, 063523.

    Google Scholar 

  74. Chen, N.; Lusk, M. T.; van Duin, A. C. T.; Goddard, W. A., III. Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 2005, 72, 085416.

    Google Scholar 

  75. Çağin, T.; Gao, G.; Goddard III, W. A. Computational studies on mechanical properties of carbon nanotori. Turk. J. Phys. 2006, 30, 221–229.

    Google Scholar 

  76. Feng, C.; Liew, K. M. A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension. Carbon 2009, 47, 3508–3514.

    Google Scholar 

  77. Feng, C.; Liew, K. M. Buckling behavior of armchair and zigzag carbon nanorings. J. Comput. Theor. Nanosci. 2010, 7, 2049–2053.

    Google Scholar 

  78. Zheng, M.; Ke, C. Elastic deformation of carbon-nanotube nanorings. Small 2010, 6, 1647–1655.

    Google Scholar 

  79. Zheng, M.; Ke, C. Mechanical deformation of carbon nanotube nano-rings on flat substrate. J. Appl. Phys. 2011, 109, 074304.

    Google Scholar 

  80. Zhang, Z.; Yang, Z.; Wang, X.; Yuan, J.; Zhang, H.; Qiu, M.; Peng, J. The electronic structure of a deformed chiral carbon nanotorus. J. Phys.: Condens. Matter 2005, 17, 4111–4120.

    Google Scholar 

  81. Ceulemans, A.; Chibotaru, L. F.; Bovin, S. A.; Fowler, P. W. The electronic structure of polyhex carbon tori. J. Chem. Phys. 2000, 112, 4271–4278.

    Google Scholar 

  82. Liu, C. P.; Ding, J. W. Electronic structure of carbon nanotori: The roles of curvature, hybridization, and disorder. J. Phys.: Condens. Matter 2006, 18, 4077–4084.

    Google Scholar 

  83. Oh, D.-H.; Mee Park, J.; Kim, K. S. Structures and electronic properties of small carbon nanotube tori. Phys. Rev. B 2000, 62, 1600–1603.

    Google Scholar 

  84. Yazgan, E.; Taşci, E.; Malcioğlu, O. B.; Erkoç, Ş. Electronic properties of carbon nanotoroidal structures. J. Mol. Struct.: Theochem. 2004, 681, 231–234.

    Google Scholar 

  85. Wu, X.; Zhou, R.; Yang, J.; Zeng, X. C. Density-functional theory studies of step-kinked carbon nanotubes. J. Phys. Chem. C 2011, 115, 4235–4239.

    Google Scholar 

  86. Haddon, R. C. Electronic properties of carbon toroids. Nature 1997, 388, 31–32.

    Google Scholar 

  87. Rodríguez-Manzo, J. A.; López-Urías, F.; Terrones, M.; Terrones, H. Magnetism in corrugated carbon nanotori: The importance of symmetry, defects, and negative curvature. Nano Lett. 2004, 4, 2179–2183.

    Google Scholar 

  88. Lin, M. F.; Chuu, D. S. Persistent currents in toroidal carbon nanotubes. Phys. Rev. B 1998, 57, 6731–6737.

    Google Scholar 

  89. Latil, S.; Roche, S.; Rubio, A. Persistent currents in carbon nanotube based rings. Phys. Rev. B 2003, 67, 165420.

    Google Scholar 

  90. Shyu, F. L.; Tsai, C. C.; Chang, C. P.; Chen, R. B.; Lin, M. F. Magnetoelectronic states of carbon toroids. Carbon 2004, 42, 2879–2885.

    Google Scholar 

  91. Margańska, M.; Szopa, M.; Zipper, E. Aharonov-Bohm effect in carbon nanotubes and tori. Physica Status Solidi B 2005, 242, 285–290.

    Google Scholar 

  92. Zhang, Z. H.; Yuan, J. H.; Qiu, M.; Peng, J. C.; Xiao, F. L. Persistent currents in carbon nanotori: Effects of structure deformations and chirality. J. Appl. Phys. 2006, 99, 104311.

    Google Scholar 

  93. Tsai, C. C.; Shyu, F. L.; Chiu, C. W.; Chang, C. P.; Chen, R. B.; Lin, M. F. Magnetization of armchair carbon tori. Phys. Rev. B 2004, 70, 075411.

    Google Scholar 

  94. Liu, C. P.; Chen, H. B.; Ding, J. W. Magnetic response of carbon nanotori: The importance of curvature and disorder. J. Phys.: Condens. Matter 2008, 20, 015206.

    Google Scholar 

  95. Liu, C. P.; Xu, N. Magnetic response of chiral carbon nanotori: The dependence of torus radius. Physica B 2008, 403, 2884–2887.

    Google Scholar 

  96. Rodríguez-Manzo, J. A.; López-Urías, F.; Terrones, M.; Terrones, H. Anomalous paramagnetism in doped carbon nanostructures. Small 2007, 3, 120–125.

    Google Scholar 

  97. Hilder, T. A.; Hill, J. M. Orbiting atoms and C60 fullerenes inside carbon nanotori. J. Appl. Phys. 2007, 101, 064319.

    Google Scholar 

  98. Lusk, M. T.; Hamm, N. Ab initio study of toroidal carbon nanotubes with encapsulated atomic metal loops. Phys. Rev. B 2007, 76, 125422.

    Google Scholar 

  99. Chan, Y.; Cox, B. J.; Hill, J. M. Carbon nanotori as traps for atoms and ions. Physica B 2012, 407, 3479–3483.

    Google Scholar 

  100. Mukherjee, B.; Maiti, P. K.; Dasgupta, C.; Sood, A. K. Single-file diffusion of water inside narrow carbon nanorings. ACS Nano 2010, 4, 985–991.

    Google Scholar 

  101. Castillo-Alvarado, F. d. L.; Ortíz-López, J.; Arellano, J. S.; Cruz-Torres, A. Hydrogen atorage on beryllium-coated toroidal carbon nanostructure C120 modeled with density functional theory. Adv. Sci. Technol. 2010, 72, 188–195.

    Google Scholar 

  102. Wang, M. S.; Peng, L. M.; Wang, J. Y.; Chen, Q. Shaping carbon nanotubes and the effects on their electrical and mechanical properties. Adv. Funct. Mater. 2006, 16, 1462–1468.

    Google Scholar 

  103. Geblinger, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nat. Nanotechnol. 2008, 3, 195–200.

    Google Scholar 

  104. Yao, Y.; Dai, X.; Feng, C.; Zhang, J.; Liang, X.; Ding, L.; Choi, W.; Choi, J. Y.; Kim, J. M.; Liu, Z. Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process. Adv. Mater. 2009, 21, 4158–4162.

    Google Scholar 

  105. Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistor. J. Phys. Chem. C 2007, 111, 17879–17886.

    Google Scholar 

  106. Duan, X.; Son, H.; Gao, B.; Zhang, J.; Wu, T.; Samsonidze, G. G.; Dresselhaus, M. S.; Liu, Z.; Kong, J. Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes. Nano Lett. 2007, 7, 2116–2121.

    Google Scholar 

  107. Gao, B.; Duan, X.; Zhang, J.; Wu, T.; Son, H.; Kong, J.; Liu, Z. Raman spectral probing of electronic transition energy Eii Variation of Individual SWNTs under Torsional Strain. Nano Lett. 2007, 7, 750–753.

    Google Scholar 

  108. Gao, B.; Duan, X.; Zhang, J.; Wu, G.; Dong, J.; Liu, Z. G-band variation of individual single-walled carbon nanotubes under torsional strain. J. Phys. Chem. C 2008, 112, 10789–10793.

    Google Scholar 

  109. Xu, Z.; Buehler, M. J. Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 2009, 20, 185701.

    Google Scholar 

  110. Lu, W. Quantum conductance of a helically coiled carbon nanotube. Sci. Technol. Adv. Mater. 2005, 6, 809–813.

    Google Scholar 

  111. Liu, L.; Gao, J.; Guo, X.; Zhao, J. Electromechanical properties of zigzag-shaped carbon nanotubes. Phys. Chem. Chem. Phys. 2013, 15, 17134–17141.

    Google Scholar 

  112. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.

    Google Scholar 

  113. Natsuki, T.; Endo, M. Stress simulation of carbon nanotubes in tension and compression. Carbon 2004, 42, 2147–2151.

    Google Scholar 

  114. Xiao, J. R.; Gama, B. A.; Gillespie Jr., J. W. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 2005, 42, 3075–3092.

    Google Scholar 

  115. Tekleab, D.; Czerw, R.; Carroll, D.; Ajayan, P. Electronic structure of kinked multiwalled carbon nanotubes. Appl. Phys. Lett. 2000, 76, 3594–3596.

    Google Scholar 

  116. Lu, J.-Q.; Wu, J.; Duan, W.; Liu, F.; Zhu, B.-F.; Gu, B.-L. Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Phys. Rev. Lett. 2003, 90, 156601.

    Google Scholar 

  117. Wu, J.; Zang, J.; Larade, B.; Guo, H.; Gong, X. G.; Liu, F. Computational design of carbon nanotube electromechanical pressure sensors. Phys. Rev. B 2004, 69, 153406.

    Google Scholar 

  118. Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G. Carbon nanotube actuators. Science 1999, 284, 1340–1344.

    Google Scholar 

  119. Cao, J.; Wang, Q.; Dai, H. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.

    Google Scholar 

  120. Srivastava, D.; Brenner, D. W.; Schall, J. D.; Ausman, K. D.; Yu, M.; Ruoff, R. S. Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: Kinky chemistry. J. Phys. Chem. B 1999, 103, 4330–4337.

    Google Scholar 

  121. Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Google Scholar 

  122. Jia, X.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H.; Hsieh, Y.-P.; Reina, A.; Kong, J.; et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705.

    Google Scholar 

  123. Warner, J. H.; Schäffel, F.; Rümmeli, M. H.; Büchner, B. Examining the edges of multi-layer graphene sheets. Chem. Mater. 2009, 21, 2418–2421.

    Google Scholar 

  124. Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Google Scholar 

  125. Wu, X.; Zeng, X. C. Sawtooth-like graphene nanoribbon. Nano Res. 2008, 1, 40–45.

    Google Scholar 

  126. Kou, L.; Tang, C.; Chen, C.; Guo, W. Hybrid W-shaped graphene nanoribbons: Distinct electronic and transport properties. J. Appl. Phys. 2011, 110, 124312.

    Google Scholar 

  127. Yan, Q.; Huang, B.; Yu, J.; Zheng, F.; Zang, J.; Wu, J.; Gu, B.-L.; Liu, F.; Duan, W. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 2007, 7, 1469–1473.

    Google Scholar 

  128. Wang, Z. F.; Shi, Q. W.; Li, Q.; Wang, X.; Hou, J. G.; Zheng, H.; Yao, Y.; Chen, J. Z-shaped graphene nanoribbon quantum dot device. Appl. Phys. Lett. 2007, 91, 053109.

    Google Scholar 

  129. Kong, D.; Randel, J. C.; Peng, H.; Cha, J. J.; Meister, S.; Lai, K.; Chen, Y.; Shen, Z.-X.; Manoharan, H. C.; Cui, Y. Topological insulator nanowires and nanoribbons. Nano Lett. 2009, 10, 329–333.

    Google Scholar 

  130. Yu, D.; Lupton, E. M.; Gao, H.; Zhang, C.; Liu, F. A unified geometric rule for designing nanomagnetism in graphene. Nano Res. 2008, 1, 497–501.

    Google Scholar 

  131. Wang, Z.; Jin, S.; Liu, F. Spatially separated spin carriers in spin-semiconducting graphene nanoribbons. Phys. Rev. Lett. 2013, 111, 096803.

    Google Scholar 

  132. Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. Electronic and magnetic properties of hybrid graphene nanoribbons with zigzag-armchair heterojunctions. J. Phys. Chem. C 2011, 116, 208–213.

    Google Scholar 

  133. Huang, W.; Wang, J.-S.; Liang, G. Theoretical study on thermoelectric properties of kinked graphene nanoribbons. Phys. Rev. B 2011, 84, 045410.

    Google Scholar 

  134. Zhang, H.-S.; Guo, Z.-X.; Gong, X.-G.; Cao, J.-X. Thermal conductivity of sawtooth-like graphene nanoribbons: A molecular dynamics study. J. Appl. Phys. 2012, 112, 123508.

    Google Scholar 

  135. Koos, A. A.; Ehlich, R.; Horvath, Z. E.; Osvath, Z.; Gyulai, J.; Nagy, J. B.; Biro, L. P. STM and AFM investigation of coiled carbon nanotubes produced by laser evaporation of fullerene. Mater. Sci. Eng.: C 2003, 23, 275–278.

    Google Scholar 

  136. Saveliev, A. V.; Merchan-Merchan, W.; Kennedy, L. A. Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust. Flame 2003, 135, 27–33.

    Google Scholar 

  137. Bai, J. B.; Hamon, A. L.; Marraud, A.; Jouffrey, B.; Zymla, V. Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett. 2002, 365, 184–188.

    Google Scholar 

  138. Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Cholesterol-aided supramolecular control over chromophore packing: Twisted and coiled helices with distinct optical, chiroptical, and morphological features. Angew. Chem. Int. Edit. 2006, 45, 456–460.

    Google Scholar 

  139. Yamamoto, T.; Fukushima, T.; Aida, T. Self-assembled nanotubes and nanocoils from ss-conjugated building blocks. In Self-Assembled Nanomaterials II. Toshimi, S., Ed.; Springer: Berlin, 2008; pp. 1–27.

    Google Scholar 

  140. Fejes, D.; Hernádi, K. A review of the properties and CVD synthesis of coiled carbon nanotubes. Materials 2010, 3, 2618–2642.

    Google Scholar 

  141. Hokushin, S.; Pan, L.; Nakayama, Y. Diameter control of carbon nanocoils by the catalyst of organic metals. Jpn. J. Appl. Phys. 2007, 46, 5383–5385.

    Google Scholar 

  142. Li, D.; Pan, L.; Wu, Y.; Peng, W. The effect of changes in synthesis temperature and acetylene supply on the morphology of carbon nanocoils. Carbon 2012, 50, 2571–2580.

    Google Scholar 

  143. Wen, Y.; Shen, Z. Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis. Carbon 2001, 39, 2369–2374.

    Google Scholar 

  144. Bajpai, V.; Dai, L.; Ohashi, T. Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 5070–5071.

    Google Scholar 

  145. Pan, L. J.; Zhang, M.; Nakayama, Y. Growth mechanism of carbon nanocoils. J. Appl. Phys. 2002, 91, 10058–10061.

    Google Scholar 

  146. Zhang, X. F.; Zhang, Z. Polygonal spiral of coil-shaped carbon nanotubules. Phys. Rev. B 1995, 52, 5313–5317.

    Google Scholar 

  147. Lu, M.; Li, H.-L.; Lau, K.-T. Formation and growth mechanism of dissimilar coiled carbon nanotubes by reduced-pressure catalytic chemical vapor deposition. J. Phys. Chem. B 2004, 108, 6186–6192.

    Google Scholar 

  148. Bai, J. B. Growth of nanotube/nanofibre coils by CVD on an alumina substrate. Mater. Lett. 2003, 57, 2629–2633.

    Google Scholar 

  149. Zhang, G. Y.; Jiang, X.; Wang, E. G. Self-assembly of carbon nanohelices: Characteristics and field electron emission properties. Appl. Phys. Lett. 2004, 84, 2646–2648.

    Google Scholar 

  150. Varadan, V. K.; Xie, J. Synthesis of carbon nanocoils by microwave CVD. Smart Mater. Struct. 2002, 11, 728–734.

    Google Scholar 

  151. Hyeon, T.; Han, S.; Sung, Y.-E.; Park, K.-W.; Kim, Y.-W. High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angew. Chem. Int. Edit. 2003, 42, 4352–4356.

    Google Scholar 

  152. Park, K.-W.; Sung, Y.-E.; Han, S.; Yun, Y.; Hyeon, T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 939–944.

    Google Scholar 

  153. Kuzuya, C.; In-Hwang, W.; Hirako, S.; Hishikawa, Y.; Motojima, S. Preparation, morphology, and growth mechanism of carbon nanocoils. Chem. Vapor Depos. 2002, 8, 57–62.

    Google Scholar 

  154. Fonseca, A.; Hernadi, K.; Nagy, J. B.; Lambin, P.; Lucas, A. A. Growth mechanism of coiled carbon nanotubes. Synthetic Met. 1996, 77, 235–242.

    Google Scholar 

  155. Chen, X.; Yang, S.; Takeuchi, K.; Hashishin, T.; Iwanaga, H.; Motojiima, S. Conformation and growth mechanism of the carbon nanocoils with twisting form in comparison with that of carbon microcoils. Diam. Relat. Mater. 2003, 12, 1836–1840.

    Google Scholar 

  156. Bandaru, P. R.; Daraio, C.; Yang, K.; Rao, A. M. A plausible mechanism for the evolution of helical forms in nanostructure growth. J. Appl. Phys. 2007, 101, 094307.

    Google Scholar 

  157. Dunlap, B. I. Relating carbon tubules. Phys. Rev. B 1994, 49, 5643–5651.

    Google Scholar 

  158. Fonseca, A.; Hernadi, K.; Nagy, J. B.; Lambin, P.; Lucas, A. A. Model structure of perfectly graphitizable coiled carbon nanotubes. Carbon 1995, 33, 1759–1775.

    Google Scholar 

  159. Ihara, S.; Itoh, S.; Kitakami, J.-I. Helically coiled cage forms of graphitic carbon. Phys. Rev. B 1993, 48, 5643–5647.

    Google Scholar 

  160. Setton, R.; Setton, N. Carbon nanotubes: III. Toroidal structures and limits of a model for the construction of helical and S-shaped nanotubes. Carbon 1997, 35, 497–505.

    Google Scholar 

  161. Akagi, K.; Tamura, R.; Tsukada, M.; Itoh, S.; Ihara, S. Electronic structure of helically coiled cage of graphitic carbon. Phys. Rev. Lett. 1995, 74, 2307–2310.

    Google Scholar 

  162. Akagi, K.; Tamura, R.; Tsukada, M.; Itoh, S.; Ihara, S. Electronic structure of helically coiled carbon nanotubes: Relation between the phason lines and energy band features. Phys. Rev. B 1996, 53, 2114–2120.

    Google Scholar 

  163. Biró, L. P.; Márk, G. I.; Lambin, P. Regularly coiled carbon nanotubes. IEEE T. Nanotechnol. 2003, 2, 362–367.

    Google Scholar 

  164. Liu, L.; Gao, H.; Zhao, J.; Lu, J. Superelasticity of carbon nanocoils from atomistic quantum simulations. Nanoscale Res. Lett. 2010, 5, 478–483.

    Google Scholar 

  165. Feng, C.; Liew, K. M. Structural stability of carbon nanosprings. Carbon 2011, 49, 4688–4694.

    Google Scholar 

  166. Zhong-can, O.-Y.; Su, Z.-B.; Wang, C.-L. Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion. Phys. Rev. Lett. 1997, 78, 4055–4058.

    Google Scholar 

  167. Wu, J.; He, J.; Odegard, G. M.; Nagao, S.; Zheng, Q.; Zhang, Z. Giant stretchability and reversibility of tightly wound helical carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 13775–13785.

    Google Scholar 

  168. Volodin, A.; Ahlskog, M.; Seynaeve, E.; Van Haesendonck, C.; Fonseca, A.; Nagy, J. B. Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy. Phys. Rev. Lett. 2000, 84, 3342–3345.

    Google Scholar 

  169. Hayashida, T.; Pan, L.; Nakayama, Y. Mechanical and electrical properties of carbon tubule nanocoils. Physica B 2002, 323, 352–353.

    Google Scholar 

  170. Chen, X.; Zhang, S.; Dikin, D. A.; Ding, W.; Ruoff, R. S.; Pan, L.; Nakayama, Y. Mechanics of a carbon nanocoil. Nano Lett. 2003, 3, 1299–1304.

    Google Scholar 

  171. Huang, W. M. Mechanics of coiled nanotubes in uniaxial tension. Mater. Sci. Eng.: A 2005, 408, 136–140.

    Google Scholar 

  172. Neng-Kai, C.; Shuo-Hung, C. Determining mechanical properties of carbon microcoils using lateral force microscopy. IEEE T. Nanotechnol. 2008, 7, 197–201.

    Google Scholar 

  173. Poggi, M. A.; Boyles, J. S.; Bottomley, L. A.; McFarland, A. W.; Colton, J. S.; Nguyen, C. V.; Stevens, R. M.; Lillehei, P. T. Measuring the compression of a carbon nanospring. Nano Lett. 2004, 4, 1009–1016.

    Google Scholar 

  174. Fonseca, A. F. D.; Galvao, D. S. Mechanical properties of nanosprings. Phys. Rev. Lett. 2004, 92, 175502.

    Google Scholar 

  175. da Fonseca, A. F.; Malta, C. P.; Galvao, D. S. Mechanical properties of amorphous nanosprings. Nanotechnology 2006, 17, 5620–5626.

    Google Scholar 

  176. Ghaderi, S. H.; Hajiesmaili, E. Nonlinear analysis of coiled carbon nanotubes using molecular dynamics finite element method. Mater. Sci. Eng.: A 2013, 582, 225–234.

    Google Scholar 

  177. Ghaderi, S. H.; Hajiesmaili, E. Molecular structural mechanics applied to coiled carbon nanotubes. Comput. Mater. Sci. 2010, 55, 344–349.

    Google Scholar 

  178. Coluci, V. R.; Fonseca, A. F.; Galvão, D. S.; Daraio, C. Entanglement and the nonlinear elastic behavior of forests of coiled carbon nanotubes. Phys. Rev. Lett. 2008, 100, 086807.

    Google Scholar 

  179. Kaneto, K.; Tsuruta, M.; Motojima, S. Electrical properties of carbon micro coils. Synthetic Met. 1999, 103, 2578–2579.

    Google Scholar 

  180. Shen, J.; Chen, Z.; Wang, N.; Li, W.; Chen, L. Electrical properties of a single microcoiled carbon fiber. Appl. Phys. Lett. 2006, 89, 153132.

    Google Scholar 

  181. Fujii, M.; Matsui, M.; Motojima, S.; Hishikawa, Y. Magnetoresistance in carbon micro-coils obtained by chemical vapor deposition. Thin Solid Film. 2002, 409, 78–81.

    Google Scholar 

  182. Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56.

    Google Scholar 

  183. Chiu, H.-S.; Lin, P.-I.; Wu, H.-C.; Hsieh, W.-H.; Chen, C.-D.; Chen, Y.-T. Electron hopping conduction in highly disordered carbon coils. Carbon 2009, 47, 1761–1769.

    Google Scholar 

  184. Tang, N.; Kuo, W.; Jeng, C.; Wang, L.; Lin, K.; Du, Y. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 2010, 4, 781–788.

    Google Scholar 

  185. Liu, L.; Gao, H.; Zhao, J.; Lu, J. Quantum conductance of armchair carbon nanocoils: Roles of geometry effects. Sci. China Phys. Mech. Astron. 2011, 54, 841–845.

    Google Scholar 

  186. Liu, J.; Webster, S.; Carroll, D. L. Highly aligned coiled nitrogen-doped carbon nanotubes synthesized by injection-assisted chemical vapor deposition. Appl. Phys. Lett. 2006, 88, 213119.

    Google Scholar 

  187. Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogendoped multi-walled carbon nanocoils as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Power Sources 2010, 195, 8080–8083.

    Google Scholar 

  188. Wen, J.; Zhang, Y.; Tang, N.; Wan, X.; Xiong, Z.; Zhong, W.; Wang, Z.; Wu, X.; Du, Y. Synthesis, photoluminescence, and magnetic properties of nitrogen-doping helical carbon nanotubes. J. Phys. Chem. C 2011, 115, 12329–12334.

    Google Scholar 

  189. Rakhi, R. B.; Chen, W.; Alshareef, H. N. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J. Mater. Chem. 2012, 22, 5177–5183.

    Google Scholar 

  190. Saito, Y.; Uemura, S.; Hamaguchi, K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 1998, 37, L346–L348.

    Google Scholar 

  191. Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y.; Jin, Y. W.; Han, I. T.; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 1999, 75, 3129–3131.

    Google Scholar 

  192. Jiao, J.; Einarsson, E.; Tuggle, D. W.; Love, L.; Prado, J.; Coia, G. M. High-yield synthesis of carbon coils on tungsten substrates and their behavior in the presence of an electric field. J. Mater. Res. 2003, 18, 2580–2587.

    Google Scholar 

  193. Einarsson, E.; Tuggle, D. W.; Jiao, J. In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field. Appl. Phys. A 2004, 79, 2049–2054.

    Google Scholar 

  194. Hokushin, S.; Pan, L.; Konishi, Y.; Tanaka, H.; Nakayama, Y. Field emission properties and structural changes of a stand-alone carbon nanocoil. Jpn. J. Appl. Phys. 2007, 46, L565–L567.

    Google Scholar 

  195. Ok, J. G.; Kim, B. H.; Sung, W. Y.; Lee, S. M.; Lee, S. W.; Kim, W. J.; Park, J. W.; Chu, C. N.; Kim, Y. H. Electrical discharge machining of carbon nanomaterials in air: Machining characteristics and the advanced field emission applications. J. Micromech. Microeng. 2008, 18, 025007.

    Google Scholar 

  196. Lahiri, I.; Seelaboyina, R.; Hwang, J. Y.; Banerjee, R.; Choi, W. Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 2010, 48, 1531–1538.

    Google Scholar 

  197. Tang, N.; Yang, Y.; Lin, K.; Zhong, W.; Au, C.; Du, Y. Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties. J. Phys. Chem. C 2008, 112, 10061–10067.

    Google Scholar 

  198. Liu, Z.; Bai, G.; Huang, Y.; Li, F.; Ma, Y.; Guo, T.; He, X.; Lin, X.; Gao, H.; Chen, Y. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 2007, 111, 13696–13700.

    Google Scholar 

  199. Tang, N.; Zhong, W.; Au, C.; Yang, Y.; Han, M.; Lin, K.; Du, Y. Synthesis, microwave electromagnetic, and microwave absorption properties of twin carbon nanocoils. J. Phys. Chem. C 2008, 112, 19316–19323.

    Google Scholar 

  200. Gupta, B. K.; Shanker, V.; Arora, M.; Haranath, D. Photoluminescence and electron paramagnetic resonance studies of springlike carbon nanofibers. Appl. Phys. Lett. 2009, 95, 073115.

    Google Scholar 

  201. Ma, H.; Pan, L.; Zhao, Q.; Zhao, Z.; Zhao, J.; Qiu, J. Electrically driven light emission from a single suspended carbon nanocoil. Carbon 2012, 50, 5537–5542.

    Google Scholar 

  202. Ma, H.; Pan, L.; Zhao, Q.; Peng, W. Near-infrared response of a single carbon nanocoil. Nanoscale 2013, 5, 1153–1158.

    Google Scholar 

  203. Motojima, S.; Chen, X.; Yang, S.; Hasegawa, M. Properties and potential applications of carbon microcoils/nanocoils. Diam. Relat. Mater. 2004, 13, 1989–1992.

    Google Scholar 

  204. Volodin, A.; Buntinx, D.; Ahlskog, M.; Fonseca, A.; Nagy, J. B.; Van Haesendonck, C. Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 2004, 4, 1775–1779.

    Google Scholar 

  205. Bell, D. J.; Sun, Y.; Zhang, L.; Dong, L. X.; Nelson, B. J.; Grutzmacher, D. Three-dimensional nanosprings for electromechanical sensors. Sensor. Actuat. A: Phys. 2006, 130-131, 54–61.

    Google Scholar 

  206. Kato, Y.; Adachi, N.; Okuda, T.; Yoshida, T.; Motojima, S.; Tsuda, T. Evaluation of induced electromotive force of a carbon micro coil. Jpn. J. Appl. Phys. 2003, 42, 5035–5037.

    Google Scholar 

  207. Shaoming, Y.; Xiuqin, C.; Aoki, H.; Motojima, S. Tactile microsensor elements prepared from aligned superelastic carbon microcoils and polysilicone matrix. Smart Mater. Struct. 2006, 15, 687–694.

    Google Scholar 

  208. Greenshields, M. W. C. C.; Hümmelgen, I. A.; Mamo, M. A.; Shaikjee, A.; Mhlanga, S. D.; van Otterlo, W. A. L.; Coville, N. J. Composites of polyvinyl alcohol and carbon (coils, undoped and nitrogen doped multiwalled carbon nanotubes) as ethanol, methanol and toluene vapor sensors. J. Nanosci. Nanotechnol. 2011, 11, 10211–10218.

    Google Scholar 

  209. Lau, K.-T.; Lu, M.; Liao, K. Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 1837–1840.

    Google Scholar 

  210. Yoshimura, K.; Nakano, K.; Miyake, T.; Hishikawa, Y.; Motojima, S. Effectiveness of carbon microcoils as a reinforcing material for a polymer matrix. Carbon 2006, 44, 2833–2838.

    Google Scholar 

  211. Li, X.-F.; Lau, K.-T.; Yin, Y.-S. Mechanical properties of epoxy-based composites using coiled carbon nanotubes. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 1837–1840.

    Google Scholar 

  212. Sanada, K.; Takada, Y.; Yamamoto, S.; Shindo, Y. Analytical and experimental characterization of stiffness and damping in carbon nanocoil reinforced polymer composites. J. Solid Mech. Mater. Eng. 2008, 2, 1517–1527.

    Google Scholar 

  213. Katsuno, T.; Chen, X.; Yang, S.; Motojima, S.; Homma, M.; Maeno, T.; Konyo, M. Observation and analysis of percolation behavior in carbon microcoils/silicone-rubber composite sheets. Appl. Phys. Lett. 2006, 88, 232115.

    Google Scholar 

  214. Yoshimura, K.; Nakano, K.; Miyake, T.; Hishikawa, Y.; Kuzuya, C.; Katsuno, T.; Motojima, S. Effect of compressive and tensile strains on the electrical resistivity of carbon microcoil/silicone-rubber composites. Carbon 2007, 45, 1997–2003.

    Google Scholar 

  215. Bi, H.; Kou, K.-C.; Ostrikov, K.; Yan, L.-K.; Wang, Z.-C. Microstructure and electromagnetic characteristics of Ni nanoparticle film coated carbon microcoils. J. Alloy. Compd. 2009, 478, 796–800.

    Google Scholar 

  216. Nakamatsu, K.; Igaki, J.; Nagase, M.; Ichihashi, T.; Matsui, S. Mechanical characteristics of tungsten-containing carbon nanosprings grown by FIB-CVD. Microelectron. Eng. 2006, 83, 808–810.

    Google Scholar 

  217. Wu, X.-L.; Liu, Q.; Guo, Y.-G.; Song, W.-G. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1468–1471.

    Google Scholar 

  218. Wang, L.; Li, C.; Gu, F.; Zhang, C. Facile flame synthesis and electrochemical properties of carbon nanocoils. J. Alloy. Compd. 2009, 473, 351–355.

    Google Scholar 

  219. Rakhi, R. B.; Cha, D.; Chen, W.; Alshareef, H. N. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles. J. Phys. Chem. C 2011, 115, 14392–14399.

    Google Scholar 

  220. Ivanovskii, A. L. Non-carbon nanotubes: Synthesis and simulation. Russ. Chem. Rev. 2002, 71, 175–194.

    Google Scholar 

  221. Xiong, Y.; Mayers, B. T.; Xia, Y. Some recent developments in the chemical synthesis of inorganic nanotubes. Chem. Commun. 2005, 5013–5022.

    Google Scholar 

  222. Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111.

    Google Scholar 

  223. Goldberger, J.; Fan, R.; Yang, P. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 2006, 39, 239–248.

    Google Scholar 

  224. Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049–5055.

    Google Scholar 

  225. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Google Scholar 

  226. Lino, A. A.; Chacham, H. L.; Mazzoni, M. R. S. C. Edge states and half-metallicity in TiO2 nanoribbons. J. Phys. Chem. C 2011, 115, 18047–18050.

    Google Scholar 

  227. Zhang, H.; Li, X.-B.; Liu, L.-M. Tunable electronic and magnetic properties of WS2 nanoribbons. J. Appl. Phys. 2013, 114, 093710.

    Google Scholar 

  228. Biswas, S.; Kar, S.; Ghoshal, T.; Ashok, V. D.; Chakrabarti, S.; Chaudhuri, S. Fabrication of GaN nanowires and nanoribbons by a catalyst assisted vapor-liquid-solid process. Mater. Res. Bull. 2007, 42, 428–436.

    Google Scholar 

  229. Camacho-Bragado, G. A.; Jose-Yacaman, M. Self-assembly of molybdite nanoribbons. Appl. Phys. A 2006, 82, 19–22.

    Google Scholar 

  230. Cao, X. B.; Xie, Y.; Zhang, S. Y.; Li, F. Q. Ultra-thin trigonal selenium nanoribbons developed from series-wound beads. Adv. Mater. 2004, 16, 649–653.

    Google Scholar 

  231. Jin, C.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

    Google Scholar 

  232. Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893.

    Google Scholar 

  233. Ataca, C.; Sahin, H.; Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 2012, 116, 8983–8999.

    Google Scholar 

  234. Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Lu, J.; Huang, B. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 2011, 13, 15546–15553.

    Google Scholar 

  235. Lee, Y.-H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C.-T.; Huang, J.-K.; Chang, M.-T.; Chang, C.-S. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852–1857.

    Google Scholar 

  236. Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Léandri, C.; Ealet, B.; Le Lay, G. Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene. Appl. Phys. Lett. 2010, 96, 183102.

    Google Scholar 

  237. De Padova, P.; Quaresima, C.; Ottaviani, C.; Sheverdyaeva, P. M.; Moras, P.; Carbone, C.; Topwal, D.; Olivieri, B.; Kara, A.; Oughaddou, H. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 2010, 96, 261905.

    Google Scholar 

  238. Feng, B.; Ding, Z.; Meng, S.; Yao, Y.; He, X.; Cheng, P.; Chen, L.; Wu, K. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 2012, 12, 3507–3511.

    Google Scholar 

  239. Gao, J.; Zhao, J. Initial geometries, interaction mechanism and high stability of silicene on Ag (111) surface. Sci. Rep. 2012, 2, 861–868.

    Google Scholar 

  240. Liu, H.; Gao, J.; Zhao, J. Silicene on substrates: A way to preserve or tune its electronic properties. J. Phys. Chem. C 2013, 117, 10353–10359.

    Google Scholar 

  241. Gao, J.; Zhang, J.; Liu, H.; Zhang, Q.; Zhao, J. Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale 2013, 5, 9785–9792.

    Google Scholar 

  242. Wang, Z.; Su, N.; Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 2013, 13, 2842–2845.

    Google Scholar 

  243. Liu, Z.; Wang, Z.-F.; Mei, J.-W.; Wu, Y.-S.; Liu, F. Flat Chern band in a two-dimensional organometallic framework. Phys. Rev. Lett. 2013, 110, 106804.

    Google Scholar 

  244. Wang, Z. F.; Liu, Z.; Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 2013, 110, 196801.

    Google Scholar 

  245. Wang, Z. F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471–1475.

    Google Scholar 

  246. Golberg, D.; Bando, Y.; Bourgeois, L.; Kurashima, K.; Sato, T. Insights into the structure of BN nanotubes. Appl. Phys. Lett. 2000, 77, 1979–1981.

    Google Scholar 

  247. Golberg, D.; Costa, P. M. F. J.; Lourie, O.; Mitome, M.; Bai, X.; Kurashima, K.; Zhi, C.; Tang, C.; Bando, Y. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 2007, 7, 2146–2151.

    Google Scholar 

  248. Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

    Google Scholar 

  249. Su, L.; Xiaozhong, Z.; Lihuan, Z.; Min, G. Twinning-induced kinking of Sb-doped ZnO nanowires. Nanotechnology 2010, 21, 435602.

    Google Scholar 

  250. Pevzner, A.; Engel, Y.; Elnathan, R.; Tsukernik, A.; Barkay, Z.; Patolsky, F. Confinement-guided shaping of semiconductor nanowires and nanoribbons: “Writing with nanowires”. Nano Lett. 2012, 12, 7–12.

    Google Scholar 

  251. Liu, B.; Bando, Y.; Liu, L.; Zhao, J.; Masanori, M.; Jiang, X.; Golberg, D. Solid-solution semiconductor nanowires in pseudobinary systems. Nano Lett. 2013, 13, 85–90.

    Google Scholar 

  252. Terauchi, M.; Tanaka, M.; Matsuda, H.; Takeda, M.; Kimura, K. Helical nanotubes of hexagonal boron nitride. J. Electron Microsc. 1997, 46, 75–78.

    Google Scholar 

  253. Gao, P. X.; Mai, W.; Wang, Z. L. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Lett. 2006, 6, 2536–2543.

    Google Scholar 

  254. Jung, J. H.; Yoshida, K.; Shimizu, T. Creation of novel double-helical silica nanotubes using binary gel system. Langmuir 2002, 18, 8724–8727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu or Jijun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, F. & Zhao, J. Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications. Nano Res. 7, 626–657 (2014). https://doi.org/10.1007/s12274-014-0431-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0431-1

Keywords

Navigation