Skip to main content
Log in

Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fresnel zone plates are the key optical elements for nanoscale focusing of X-ray beams with high spatial resolution. Conventional zone plates manufactured by planar nanotechnology processes are limited by the achievable aspect ratios of their zone structures. Additionally, ultra-high resolution X-ray optics with high efficiency requires three-dimensional (3-D) shaped tilted zones. The combination of high spatial resolution and high diffraction efficiency is a fundamental problem in X-ray optics. Based on electrodynamical simulations, we find that the optimized zone plate profile for volume diffraction is given by zone structures with radially increasing tilt angles and decreasing zone heights. On-chip stacking permits the realization of such advanced 3-D profiles without significant loss of the maximum theoretical efficiency. We developed triple layer on-chip stacked zone plates with an overlay accuracy of sub-2 nm which fulfills the nanofabrication requirements. Efficiency measurements of on-chip stacked zone plates show significantly increased values compared to conventional zone plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneider, G.; Guttmann, P.; Heim, S.; Rehbein, S.; Mueller, F.; Nagashima, K.; Heymann, J. B.; Mueller, W. G.; McNally, J. G. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 2010, 7, 212–223.

    Article  Google Scholar 

  2. Sakdinawat A.; Attwood, D. Nanoscale X-ray imaging. Nat. Photon. 2010, 4, 840–848.

    Article  Google Scholar 

  3. Guttmann, P.; Bittencourt, C.; Rehbein, S.; Umek, P.; Ke, X.; Van Tendeloo, G.; Ewels, C. P.; Schneider G. Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM. Nat. Photon. 2012, 6, 25–29.

    Article  Google Scholar 

  4. Chao, W.; Harteneck, B. D.; Liddle, J. A.; Anderson, E. H.; Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 2005, 435, 1210–1213.

    Article  Google Scholar 

  5. Rehbein, S.; Heim, S.; Guttmann, P.; Werner, S.; Schneider, G. Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction. Phys. Rev. Lett. 2009, 103, 110801.

    Article  Google Scholar 

  6. Vila-Comamala, J.; Jefimovs, K.; Raabe, J.; Pilvi, T.; Fink, R. H.; Senoner, M.; Maassdorf, A.; Ritala, M.; David, C. Advanced thin film technology for ultrahigh resolution X-ray microscopy. Ultramicroscopy 2009, 109, 1360–1364.

    Article  Google Scholar 

  7. Rehbein, S.; Guttmann, P.; Werner, S.; Schneider, G. Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination. Opt. Express 2012, 20, 5830–5839.

    Article  Google Scholar 

  8. Chao, W.; Fischer, P.; Tyliszczak, T.; Rekawa, S.; Anderson, E.; Naulleau, P. Real space soft X-ray imaging at 10 nm spatial resolution. Opt. Express 2012, 20, 9777–9783.

    Article  Google Scholar 

  9. Kirz, J. Phase zone plates for X rays and the extreme UV. J. Opt. Soc. Am. 1974, 64, 301–309.

    Article  Google Scholar 

  10. Maser, J.; Schmahl, G. Coupled wave description of the diffraction by zone plates with high aspect ratios. Optics Commun. 1992, 89, 355–362.

    Article  Google Scholar 

  11. Schneider, G. Zone plates with high efficiency in high orders of diffraction described by dynamical theory. Appl. Phys. Lett. 1997, 71, 2242–2244.

    Article  Google Scholar 

  12. Rehbein, S.; Schneider, G. Volume zone plate development at BESSY. IPAP Conf. Series 2006, 7, 103–106.

    Google Scholar 

  13. Duvel, A.; Rudolph, D.; Schmahl, G. Fabrication of thick zone plates for multi-kilovolt X-rays. AIP Conf. Proc. 2000, 507, 607–614.

    Article  Google Scholar 

  14. Tamura, S.; Yasumato, M.; Kamijo, N.; Suzuki, Y.; Awaji, M.; Takeuchi, A.; Takano, H.; Handa, K. Development of a multilayer Fresnel zone plate for high-energy synchrotron radiation X-rays by DC sputtering deposition. J. Synchrotron Radiat. 2002, 9, 154–159.

    Article  Google Scholar 

  15. Maser, J.; Stephenson, G. B.; Vogt, S.; Yun, W.; Macrander, A. T.; Kang, H. C.; Liu, C.; Conley, R. Multilayer Laue lenses as high-resolution X-ray optics. Proc. SPIE-Int. Soc. Opt. Eng. 2004, 5539, 185–194.

    Google Scholar 

  16. Koyama, T.; Tsuji, T.; Takano, H.; Kagoshima, Y.; Ichimaru, S.; Ohchi, T.; Takenaka, H. Development of multilayer Laue lenses; (2) Circular type. AIP Conf. Proc. 2011, 1365, 100–103.

    Article  Google Scholar 

  17. Rehbein, S.; Guttmann, P.; Werner, S.; Schneider, G. Development of chemical-mechanical polished high-resolution zone plates. J. Vac. Sci. Technol. B 2007, 25, 1789–1793.

    Article  Google Scholar 

  18. Schneider, G.; Rehbein, S.; Werner, S. Volume effects in zone plates. In Modern Developments in X-Ray and Neutron Optics. Erko, A.; Idir, M.; Krist, T.; Michette A. G., Eds.; Springer Berlin Heidelberg: Berlin, 2008; pp. 137–171.

    Chapter  Google Scholar 

  19. Peuker, M. High-efficiency nickel phase zone plates with 20 nm minimum outermost zone width. Appl. Phys. Lett. 2001, 78, 2208–2210.

    Article  Google Scholar 

  20. Feng, Y.; Feser, M.; Lyon, A.; Rishton, S.; Zeng, X.; Chen, S.; Sassolini, S.; Yun, W. Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications. J. Vac. Sci. Technol. B 2007, 25, 2004–2007.

    Article  Google Scholar 

  21. Lindblom, M.; Reinspach, J.; v. Hofsten, O.; Bertilson, M; Hertz, H. M.; Holmberg, A. High-aspect-ratio germanium zone plates fabricated by reactive ion etching in chlorine. J. Vac. Sci. Technol. B 2009, 27, L1–L3.

    Article  Google Scholar 

  22. Vila-Comamala, J.; Gorelick, S.; Färm, E.; Kewish, C. M.; Diaz, A.; Barrett, R.; Guzenko, V. A.; Ritala, M.; David, C. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime. Opt. Express 2011, 19, 175–784.

    Article  Google Scholar 

  23. Werner, S.; Rehbein, S.; Guttman, P.; Heim, S.; Schneider, G. Towards stacked zone plates. J. Phys. Conf. Ser. 2009, 186, 012079.

    Article  Google Scholar 

  24. Werner, S.; Rehbein, S.; Guttmann, P.; Heim, S.; Schneider, G. Towards high diffraction efficiency zone plates for X-ray microscopy. Microelectron. Eng. 2010, 87, 1557–1560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Werner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, S., Rehbein, S., Guttmann, P. et al. Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency. Nano Res. 7, 528–535 (2014). https://doi.org/10.1007/s12274-014-0419-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0419-x

Keywords

Navigation