Skip to main content
Log in

Scalable arrays of chemical vapor sensors based on DNA-decorated graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Arrays of chemical vapor sensors based on graphene field effect transistors functionalized with single-stranded DNA have been demonstrated. Standard photolithographic processing was adapted for use on large-area graphene by including a metal protection layer, which protected the graphene from contamination and enabled fabrication of high quality field-effect transistors (GFETs). Processed graphene devices had hole mobilities of 1,640 ± 250 cm2·V−1·s−1 and Dirac voltages of 15 ± 10 V under ambient conditions. Atomic force microscopy was used to verify that the graphene surface remained uncontaminated and therefore suitable for controlled chemical functionalization. Single-stranded DNA was chosen as the functionalization layer due to its affinity to a wide range of target molecules and π-π stacking interaction with graphene, which led to minimal degradation of device characteristics. The resulting sensor arrays showed analyte- and DNA sequence-dependent responses down to parts-per-billion concentrations. DNA/GFET sensors were able to differentiate among chemically similar analytes, including a series of carboxylic acids, and structural isomers of carboxylic acids and pinene. Evidence for the important role of electrostatic chemical gating was provided by the observation of understandable differences in the sensor response to two compounds that differed only by the replacement of a (deprotonating) hydroxyl group by a neutral methyl group. Finally, target analytes were detected without loss of sensitivity in a large background of a chemically similar, volatile compound. These results motivate further development of the DNA/graphene sensor family for use in an electronic olfaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  Google Scholar 

  2. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  3. Luo, Z. T.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. T. C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 2011, 23, 1441–1447.

    Article  Google Scholar 

  4. Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.

    Article  Google Scholar 

  5. Kumar, S.; Peltekis, N.; Lee, K.; Kim, H. Y.; Duesberg, G. S. Reliable processing of graphene using metal etchmasks. Nanoscale Res. Lett. 2011, 6, 390.

    Article  Google Scholar 

  6. Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

    Article  Google Scholar 

  7. Ohno, Y.; Maehasi, K.; Matsumoto, K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 2010, 132, 18012–18013.

    Article  Google Scholar 

  8. Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.

    Article  Google Scholar 

  9. Lu, Y.; Goldsmith, B. R.; Kybert, N. J.; Johnson, A. T. C. DNA-decorated graphene chemical sensors. Appl. Phys. Lett. 2010, 97, 083107.

    Article  Google Scholar 

  10. Safron, N. S.; Kim, M.; Gopalan, P.; Arnold, M. S. Barrier-guided growth of micro- and nano-structured graphene. Adv. Mater. 2012, 24, 1041–1045.

    Article  Google Scholar 

  11. Burg, B. R.; Poulikakos, D. Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review. J. Mater. Res. 2011, 26, 1561–1571.

    Article  Google Scholar 

  12. Li, P. F.; Lei, N.; Xu, J.; Xue, W. High-yield fabrication of graphene chemiresistors with dielectrophoresis. IEEE T. Nanotechnol. 2012, 11, 751–759.

    Article  Google Scholar 

  13. Liang, X. L.; Sperling, B. A.; Calizo, I.; Cheng, G. J.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H. L.; Li, Q. L., et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153.

    Article  Google Scholar 

  14. Goossens, A. M.; Calado, V. E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L. M. K. Mechanical cleaning of graphene. Appl. Phys. Lett. 2012, 100, 073110.

    Article  Google Scholar 

  15. Nagashio, K.; Yamashita, T.; Nishimura, T.; Kita, K.; Toriumi, A. Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 2011, 110, 024513.

    Article  Google Scholar 

  16. Liao, L.; Bai, J. W.; Qu, Y. Q.; Lin, Y. C.; Li, Y. J.; Huang, Y.; Duan, X. F. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 6711–6715.

    Article  Google Scholar 

  17. Lerner, M. B.; Resczenski, J. M.; Amin, A.; Johnson, R. R.; Goldsmith, J. I.; Johnson, A. T. C. Toward quantifying the electrostatic transduction mechanism in carbon nanotube molecular sensors. J. Am. Chem. Soc. 2012, 134, 14318–14321.

    Article  Google Scholar 

  18. Kybert, N. J.; Lerner, M. B.; Yodh, J. S.; Preti, G.; Johnson, A. T. C. Differentiation of complex vapor mixtures using versatile DNA-carbon nanotube chemical sensor arrays. ACS Nano 2013, 7, 2800–2807.

    Article  Google Scholar 

  19. Staii, C.; Johnson, A. T.; Chen, M.; Gelperin, A. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005, 5, 1774–1778.

    Article  Google Scholar 

  20. Hill, A. The possible effects of the aggregation of the molecules of hemoglobin on its oxygen dissociation curve. J. Physiol. 1910, 40, 4–7.

    Google Scholar 

  21. Abboud, J. L. M.; Notario, R. Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents. Pure Appl. Chem. 1999, 71, 645–718.

    Article  Google Scholar 

  22. Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M., et al. Repeated growth and bubbling transfer of graphene with millimetresize single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

    Article  Google Scholar 

  23. Khamis, S. M.; Jones, R. A.; Johnson, A. T. C. Optimized photolithographic fabrication process for carbon nanotube devices. AIP Adv. 2011, 1, 022106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Charlie Johnson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kybert, N.J., Han, G.H., Lerner, M.B. et al. Scalable arrays of chemical vapor sensors based on DNA-decorated graphene. Nano Res. 7, 95–103 (2014). https://doi.org/10.1007/s12274-013-0376-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0376-9

Keywords

Navigation