, Volume 4, Issue 7, pp 675-684
Date: 25 Mar 2011

Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various high image quality patterns could be printed on diverse flexible substrates, including paper, poly(ethylene terephthalate) (PET) and polyimide (PI), with a simple and low-cost inkjet printing technique. The graphene-based patterns printed on plastic substrates demonstrated a high electrical conductivity after thermal reduction, and more importantly, they retained the same conductivity over severe bending cycles. Accordingly, flexible electric circuits and a hydrogen peroxide chemical sensor were fabricated and showed excellent performances, demonstrating the applications of this simple and practical inkjet printing technique using graphene inks. The results show that graphene materials-which can be easily produced on a large scale and possess outstanding electronic properties-have great potential for the convenient fabrication of flexible and low-cost graphene-based electronic devices, by using a simple inkjet printing technique.