Skip to main content
Log in

Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and show rich intramolecular features that are not observed using clean tips. Ab initio density functional theory calculations and extended Hückel theory calculations revealed that the imaging of detailed electronic states is due specifically to the decoration of the STM tip with O2. The detailed structures are differentiated only when interacting with the highly directional orbitals of the oxygen molecules adsorbed on a truncated, [111]-oriented tungsten tip. Our results indicate a method for increasing the resolution in generic scans and thus, have potential applications in fundamental research based on high-resolution electronic states of molecules on metals, concerning, for example, chemical reactions, and catalysis mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gimzewski, J. K; Joachim, C. Nanoscale science of single molecules using local probes. Science 1999, 283, 1683–1688.

    Article  CAS  Google Scholar 

  2. Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521–523.

    Article  CAS  Google Scholar 

  3. Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.

    Article  CAS  Google Scholar 

  4. Barth, J. V.; Weckesser, J.; Cai, C.; Günter, P.; Bürgi, L.; Jeandupeux, O.; Kern, K. Building supramolecular nano-structures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 2000, 39, 1230–1234.

    Article  CAS  Google Scholar 

  5. Gao, H. J.; Sohlberg, K.; Xue Z. Q.; Chen, H. Y.; Hou, S. M.; Ma, L. P.; Fang, X. W.; Pang, S. J.; Pennycook, S. J. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett. 2000, 84, 1780–1783.

    Article  CAS  Google Scholar 

  6. Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 2003, 71, 95–146.

    Article  CAS  Google Scholar 

  7. Feng, M.; Guo, X. F.; Xin, L.; He, X. B.; Ji, W.; Du, S. X.; Zhang, D. Q.; Zhu, D. B.; Gao, H. J. Stable, reproducible nanorecording on rotaxane thin films. J. Am. Chem. Soc. 2005, 127, 15338–15339.

    Article  CAS  Google Scholar 

  8. Du, S. X.; Gao, H. J.; Seidel, C.; Tsetseris, L.; Ji, W.; Kopf, H.; Chi, L. F.; Fuchs, H.; Pennycook, S. J.; Pantelides, S. T. Selective nontemplated adsorption of organic molecules on nanofacets and the role of bonding patterns. Phys. Rev. Lett. 2006, 97, 156105.

    Article  CAS  Google Scholar 

  9. Gao, H. J.; Gao, L. Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Prog. Surf. Sci. 2009, 85, 28–91.

    Article  Google Scholar 

  10. Kaiser, W. J.; Stroscio, J. A. Scanning Tunneling Microscopy, in Methods of Experimental Physics. Celotta, R.; Lucatorto, T., Eds.; Academic Press: San Diego, 1993; Vol. 27.

    Google Scholar 

  11. Foster, A. S.; Hofer, W. A. Scanning Probe Microscopy: Atomic Scale Engineering by Forces and Currents; Springer: New York, 2006.

    Google Scholar 

  12. Repp, J.; Meyer, G.; Stojković, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.

    Article  Google Scholar 

  13. Scarfato, A.; Chang, S. H.; Kuck, S.; Brede, J.; Hoffmann, G.; Wiesendanger, R. Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surf. Sci. 2008, 602, 677–683.

    Article  CAS  Google Scholar 

  14. Wang, Y.; Krögeer, J.; Berndt, R.; Hofer, W. Structural and electronic properties of ultrathin tin phthalocyanine films on Ag(111) at the single-molecule level. Angew. Chem. Int. Ed. 2009, 48, 1261–1263.

    Article  CAS  Google Scholar 

  15. Ge, X.; Manzano, C.; Berndt, G.; Anger, L. T.; Köhler, F.; Herges, R. Controlled formation of an axially bonded Co-phthalocyanine dimer. J. Am. Chem. Soc. 2009, 131, 6096–6098.

    Article  CAS  Google Scholar 

  16. Soe, W. H.; Manzano, C.; De Sarkar, A.; Chandrasekhar, N.; Joachim, C. Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys. Rev. Lett. 2009, 102, 176102.

    Article  Google Scholar 

  17. Bellec, A.; Ample, F.; Riedel, D.; Dujardin, G.; Joachim, C. Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor. Nano Lett. 2009, 9, 144–147.

    Article  CAS  Google Scholar 

  18. Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunneling microscope. Nature 1991, 352, 600–603.

    Article  CAS  Google Scholar 

  19. Bartels, L.; Meyer, G.; Rieder, K. H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 1997, 71, 213–215.

    Article  CAS  Google Scholar 

  20. Bartels, L.; Meyer, G.; Rieder, K. H. The evolution of CO adsorption on Cu(111) as studied with bare and CO-functionalized scanning tunneling tips. Surf. Sci. 1999, 432, L621–L626.

    Article  CAS  Google Scholar 

  21. Haln, J. R.; Ho, W. Single molecule imaging and vibrational spectroscopy with a chemically modified tip of a scanning tunneling microscope. Phys. Rev. Lett. 2001, 87, 196102.

    Article  Google Scholar 

  22. Deng, Z. T.; Lin, H.; Ji, W.; Gao, L.; Lin, X.; Cheng, Z. H.; He, X. B.; Lu, J. L.; Shi, D. X.; Hofer, W. A.; Gao, H. J. Selective analysis of molecular states by functionalized scanning tunneling microscopy tips. Phys. Rev. Lett. 2006, 96, 156102.

    Article  CAS  Google Scholar 

  23. Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.

    Article  CAS  Google Scholar 

  24. Hagelaar, J. H. A.; Flipse, C. F.; Cerda, J. L. Modeling realistic tip structures: Scanning tunneling microscopy of NO adsorption on Rh(111). Phys. Rev. B 2008, 78, 161405(R).

    Google Scholar 

  25. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Jiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  26. Blöchl, E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  27. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  29. Cerdá, J.; Van Hove, M. A.; Sautet, P.; Salmeron, M. Efficient method for the simulation of STM images. I. Generalized green-function formalism. Phys. Rev. B 1997, 56, 15885–15899.

    Article  Google Scholar 

  30. Cerdá, J.; Yoon, A.; Van Hove, M. A.; Sautet, P.; Salmeron, M.; Somorjai, G. A. Efficient method for the simulation of STM images. II. Application to clean Rh(111) and Rh(111)+ c(4×2)-2S. Phys. Rev. B 1997, 56, 15900–15918.

    Article  Google Scholar 

  31. Hoffmann, R. An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys. 1963, 39, 1397–1412.

    Article  CAS  Google Scholar 

  32. Cerdá, J.; Soria, F. Accurate and transferable extended Hückel-type tight-binding parameters. Phys. Rev. B 2000, 61, 7965–7971.

    Article  Google Scholar 

  33. Cheng, Z. H.; Gao, L.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; He, X. B.; Du, S. X.; Gao, H. J. Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C 2007, 111, 2656–2660.

    Article  CAS  Google Scholar 

  34. Lu, X.; Hipps, K. W. Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases. J. Phys. Chem. B 1997, 101, 5391–5396.

    Article  CAS  Google Scholar 

  35. Yoshimoto, S.; Tsutsumi, E.; Suto, K.; Honda, Y.; Itaya, K. Molecular assemblies and redox reactions of zinc(II) tetraphenylporphyrin and zinc(II) phthalocyanine on Au(111) single crystal surface at electrochemical interface. Chem. Phys. 2005, 319, 147–158.

    Article  CAS  Google Scholar 

  36. Liao, M. S.; Scheiner, S. Electronic structure and bonding in metal phthalocyanines, metal = Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 2001, 114, 9780–9791.

    Article  CAS  Google Scholar 

  37. Bohrer, F. I.; Sharoni, A.; Colesniuc, C.; Park, J.; Schuller, I. K.; Kummel, A. C.; Trogler, W. C. Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films. J. Am. Chem. Soc. 2007, 129, 5640–5646.

    Article  CAS  Google Scholar 

  38. Sabelli, N. H.; Melendres, C. A. Comparative semiempirical study of oxygen binding to model iron complexes of phthalocyanine and porphyrin. J. Phys. Chem. 1982, 86, 4342–4346.

    Article  CAS  Google Scholar 

  39. Zhivkov, I. Oxygen induced charge carrier generation and trapping in vacuum deposited phthalocyanine thin films. J. Optoelectr. and Adv. Mater. 2009, 11, 1396–1399.

    CAS  Google Scholar 

  40. Dahlberg, S. C.; Musser, M. E. Electron acceptor surface states due to oxygen adsorption on metal phthalocyanine films. J. Chem. Phys. 1980, 72, 6706–6711.

    Article  CAS  Google Scholar 

  41. Lucier, A. S.; Mortensen, H.; Grütter P. Determination of the atomic structure of scanning probe microscopy tungsten tips by field ion microscopy. Phys. Rev. B 2005, 72, 235420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. -J. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Du, S., Guo, W. et al. Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope. Nano Res. 4, 523–530 (2011). https://doi.org/10.1007/s12274-011-0108-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0108-y

Keywords

Navigation