Nano Research

, Volume 3, Issue 2, pp 69–80

Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties


  • Byungkwon Lim
    • Department of Biomedical EngineeringWashington University
  • Majiong Jiang
    • Department of ChemistryWashington University
  • Taekyung Yu
    • Department of Biomedical EngineeringWashington University
  • Pedro H. C. Camargo
    • Department of Biomedical EngineeringWashington University
    • Department of Biomedical EngineeringWashington University
Open AccessResearch Article

DOI: 10.1007/s12274-010-1010-8

Cite this article as:
Lim, B., Jiang, M., Yu, T. et al. Nano Res. (2010) 3: 69. doi:10.1007/s12274-010-1010-8


In a seed-mediated synthesis, nanocrystal growth is often described by assuming the absence of homogeneous nucleation in the solution. Here we provide new insights into the nucleation and growth mechanisms underlying the formation of bimetallic nanodendrites that are characterized by a dense array of Pt branches anchored to a Pd nanocrystal core. These nanostructures can be easily prepared by a one-step, seeded growth method that involves the reduction of K2PtCl4 by L-ascorbic acid in the presence of 9-nm truncated octahedral Pd seeds in an aqueous solution. Transmission electron microscopy (TEM) and high-resolution TEM analyses revealed that both homogeneous and heterogeneous nucleation of Pt occurred at the very early stages of the synthesis and the Pt branches grew through oriented attachment of small Pt particles that had been formed via homogeneous nucleation. These new findings contradict the generally accepted mechanism for seeded growth that only involves heterogeneous nucleation and simple growth via atomic addition. We have also investigated the electrocatalytic properties of the Pd-Pt nanodendrites for the oxygen reduction and formic acid oxidation reactions by conducting a comparative study with foam-like Pt nanostructures prepared in the absence of Pd seeds under otherwise identical conditions.


Palladiumplatinumseeded growthoxygen reductionformic acid oxidation
Download to read the full article text

Supplementary material

12274_2010_1010_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 340 KB.

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010