, Volume 2, Issue 12, pp 966-974,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 05 Mar 2010

Zigzag zinc blende ZnS nanowires: Large scale synthesis and their structure evolution induced by electron irradiation

Abstract

Large scale zigzag zinc blende single crystal ZnS nanowires have been successfully synthesized during a vapor phase growth process together with a small yield of straight wurtzite single crystal ZnS nanowires. AuPd alloy nanoparticles were utilized to catalyze a vapor-solid-solid growth process of both types of ZnS nanowires, instead of the more common vapor-liquid-solid growth process. Surprisingly, the vapor-phase grown zigzag zinc blende ZnS nanowires are metastable under high-energy electron irradiation in a transmission electron microscope, with straight wurtzite nanowires being much more stable. Upon exposure to electron irradiation, a wurtzite ZnO nanoparticle layer formed on the zigzag zinc blende ZnS nanowire surface with concomitant displacement damage. Both electron inelastic scattering and surface oxidation as a result of electron-beam heating occur during this structure evolution process. When prolonged higher-voltage electron irradiation was applied, local zinc blende ZnS nanowire bodies evolved into ZnS-ZnO nanocables, and dispersed ZnS-ZnO nanoparticle networks. Random AuPd nanoparticles were observed distributed on zigzag ZnS nanowire surfaces, which might be responsible for a catalytic oxidation effect and speed up the surface oxidation-induced structure evolution.

These authors equally contributed to this work.