, Volume 1, Issue 2, pp 158-165,
Open Access This content is freely available online to anyone, anywhere at any time.

Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes

Abstract

Here we present an easy one-step approach to pattern uniform catalyst lines for the growth of dense, aligned parallel arrays of single-walled carbon nanotubes (SWNTs) on quartz wafers by using photolithography or polydimethylsiloxane (PDMS) stamp microcontact printing (µCP). By directly doping an FeCl3/methanol solution into Shipley 1827 photoresist or polyvinylpyrrolidone (PVP), various catalyst lines can be well-patterned on a wafer scale. In addition, during the chemical vapor deposition (CVD) growth of SWNTs the polymer layers play a very important role in the formation of mono-dispersed nanoparticles. This universal and efficient method for the patterning growth of SWNTs arrays on a surface is compatible with the microelectronics industry, thus enabling of the fabrication highly integrated circuits of SWNTs.