Skip to main content
Log in

A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

While the number and diversity of lead compounds has increased with the development of science technologies, ca. 90 % of new chemical entities under development have shown low aqueous solubility, classified as class II or IV of the biopharmaceutics classification system (BCS). The low aqueous solubility hinders their clinical translations due to low bioavailability and dissolution-limited absorption of orally-administered drugs. Several technologies have been employed to improve the solubility of poorly water-soluble drugs. In this paper, a new method of nanoparticulation using fat and a supercritical fluid (NUFS) for the formulation of hydrophobic drugs was applied to solve the low solubility problem. A typical BCS class II drug, itraconazole, was selected and formulated with hydroxypropyl methylcellulose, emulsification, and anticoagulating agents for NUFS. The non-spherical itraconazole nanoparticles prepared by NUFS were ~300–500 nm in size with a ~15-fold improved dissolution rate compared to non-nanoparticles of itraconazole (i.e., raw itraconazole). In addition, a high drug content of ~46 % by weight and a drug loading efficiency greater than 85 % were achieved. Therefore, the new technology for nano-platforms could be a promising solution for solubilization of poorly water-soluble drugs, resulting in improved bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Marzouqui, A., I. Shehatta, B. Jobe, and A. Dowaidar. 2006. Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. Journal of Pharmaceutical Sciences 95: 292–304.

    Article  Google Scholar 

  • Allen, L.V., R.S. Levinson, and D. De Martono. 1978. Dissolution rates of hydrocortisone and prednisone utilizing sugar solid dispersion systems in tablet form. Journal of Pharmaceutical Sciences 67: 979–981.

    Article  PubMed  CAS  Google Scholar 

  • Arnum, P.V. 2010. Solubilizing the Insoluble. Pharmaceutical Technology 35: 50–56.

    Google Scholar 

  • Benet, L.Z., C. Wu, and J.M. Custodio. 2006. Predicting drug absorption and the effects of food on oral bioavailability. Bulletin Technology Gattefosse 99: 9–16.

    Google Scholar 

  • Borm, P., F. Klaessig, T. Landry, and E. Al. 2006. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol Science 90: 23–32.

    Article  CAS  Google Scholar 

  • Challa, R., A. Ahuja, J. Ali, and R.K. Khar. 2005. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 6: E329–E357.

    Article  PubMed  Google Scholar 

  • Chen, H., C. Khemtong, X. Yang, X. Chang, and J. Gao. 2011. Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today 16: 354–360.

    Article  PubMed  CAS  Google Scholar 

  • Debord, B., C. Lefebvre, A.M. Guyot-Hermann, J. Hubert, R. Bouche, and J.C. Cuyot. 1987. Study of different crystalline forms of mannitol: Comparative behaviour under compression. Drug Development and Industrial Pharmacy 13: 1533–1546.

    Article  CAS  Google Scholar 

  • Fahr, A., and X. Liu. 2007. Drug delivery strategies for poorly water-soluble drugs. Expert Opinion on Drug Delivery 4: 403–416.

    Article  PubMed  CAS  Google Scholar 

  • Foster, N., R. Mammucari, F. Dehghani, A. Barrett, K. Bezanehtak, E. Coen, G. Combes, L. Meure, A. Ng, and H.L. Regtop. 2003. Processing pharmaceutical compounds using dense gas technology. Industrial and Engineering Chemistry Research 42: 6476–6493.

    Article  CAS  Google Scholar 

  • Horter, D., and J.B. Dressman. 2001. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Advanced Drug Delivery Reviews 46: 75–87.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, K., D. Young, and S. Pant. 2000. Drug-excipient interactions and their affect on absorption. Pharmaceutical Science and Technology Today 3: 336–345.

    Article  PubMed  CAS  Google Scholar 

  • Kawabata, Y., K. Wada, M. Nakatani, S. Yamada, and S. Onoue. 2011. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmacy 420: 1–10.

    Article  CAS  Google Scholar 

  • Keck, C.M., and R.H. Muller. 2006. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European Journal of Pharmaceutics and Biopharmaceutics 62: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Kesisoglou, F., S. Panmai, and Y. Wu. 2007. Nanosizing-oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews 59: 631–644.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.-S. (2007) Method for preparing nano-scale or amorphous particle using solid fat as a solvent. BIO-SNECTICS INC., US 2007/0071826 A1, US.

  • Kim, K., and Cho, Y. (2007) Method for preparing nano-scale particle of active material. Bio-Synectics, Inc. WO/2007/129829.

  • Kim, K.T., J.Y. Lee, M.Y. Lee, C.K. Song, J. Choi, and D–.D. Kim. 2011. Solid dispersions as a drug delivery system. Journal of Pharmaceutical Investigation 41: 125–142.

    Article  CAS  Google Scholar 

  • Kipp, J.E. 2004. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. International Journal of Pharmaceutics 284: 109–122.

    Article  PubMed  CAS  Google Scholar 

  • Ku, M.S., and W. Dulin. 2012. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-Of-Concept. Pharmaceutical Development and Technology 17: 285–302.

    Article  PubMed  CAS  Google Scholar 

  • Löbenberg, R., and G.L. Amidon. 2000. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. European Journal of Pharmaceutics and Biopharmaceutics 50: 3–12.

    Article  PubMed  Google Scholar 

  • Lee, S.J., Y.H. Kim, S.H. Lee, and M. Hahn. 2012. Characterization of nano oxaliplatin prepared by novel Fat Employing Supercritical Nano System, the FESNS(R). Pharmaceutical Development and Technology 17: 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Lindenberg, M., S. Kopp, and J.B. Dressman. 2004. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics 58: 265–278.

    Article  PubMed  Google Scholar 

  • Lipinski, C.A. 2000. Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods 44: 235–249.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski, C.A., F. Lombardo, B.W. Dominy, and P.J. Feeney. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 46: 3–26.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R. 2008. Water-insoluble drug formulation. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Muller, R.H., and K. Peters. 1998. Nanosuspensions for the formulation of poorly water soluble drugs. I. Preparation by a size reduction technique. International Journal of Pharmaceutics 160: 229–237.

    Article  CAS  Google Scholar 

  • Noyes, A.A., and W.R. Whitney. 1897. The rate of solution of solid substances in their own solution. Journal of the American Chemical Society 19: 930–934.

    Article  Google Scholar 

  • Pasquali, I., R. Bettini, and F. Giordano. 2008. Supercritical fluid technologies: An innovative approach for manipulating the solid-state of pharmaceuticals. Advanced Drug Delivery Reviews 60: 399–410.

    Article  PubMed  CAS  Google Scholar 

  • Patel, D.V., and E.M. Gordon. 1996. Applications of small-molecule combinatorial chemistry to drug discovery. Drug Discovery Today 1: 134–144.

    Article  CAS  Google Scholar 

  • Rabinow, B.E. 2004. Nanosuspensions in drug delivery. Nat Rev Drug Discov 3: 785–796.

    Article  PubMed  CAS  Google Scholar 

  • Rambali, B., G. Verreck, L. Baert, and D.L. Massart. 2003. Itraconazole formulation studies of the melt-extrusion process with mixture design. Drug Development and Industrial Pharmacy 29: 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Sastry, S., J. Nyshadham, and J. Fix. 2000. Recent technological advances in oral drug delivery-a review. Pharmaceutical Science and Technology Today 3: 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Saxena, V., R. Panicucci, Y. Joshi, and S. Garad. 2009. Developability assessment in pharmaceutical industry: An integrated group approach for selecting developable candidates. Journal of Pharmaceutical Sciences 98: 1962–1979.

    Article  PubMed  CAS  Google Scholar 

  • Sekhon, B.S. 2010. Supercritical fluid technology: An overview of pharmaceutical applications. International Journal of PharmTech Research 2: 810–826.

    CAS  Google Scholar 

  • Serajuddin, A.T.M. 2007. Salt formation to improve drug solubility. Advanced Drug Delivery Reviews 59: 603–616.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, P., W.A. Denny, and S. Garg. 2009. Effect of wet milling process on the solid state of indomethacin and simvastatin. International Journal of Pharmaceutics 380: 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Stella, V.J., and K.W. Nti-Addae. 2007. Prodrug strategies to overcome poor water solubility. Advanced Drug Delivery Reviews 59: 677–694.

    Article  PubMed  CAS  Google Scholar 

  • Tao, L., W. Hu, Y. Liu, G. Huang, B. Sumer, and J. Gao. 2011. Shape-specific polymeric nanomedicine: Emerging opportunities and challenges. Experimental Medicine and Biology 236: 20–29.

    Article  CAS  Google Scholar 

  • Torchilin, V. 2007. Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research 24: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Valizadeh, H., A. Nokhodchi, N. Qarakhani, P. Zakeri-Milani, S. Azarmi, D. Hassanzadeh, and R. Lobenberg. 2004. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit E100. Drug Development and Industrial Pharmacy 30: 303–317.

    Article  PubMed  CAS  Google Scholar 

  • Van Eerdenbrugh, B., G. Van Den Mooter, and P. Augustijns. 2008. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. International Journal of Pharmaceutics 364: 64–75.

    Article  PubMed  Google Scholar 

  • Van Speybroeck, M., R. Mols, R. Mellaerts, T.D. Thi, J.A. Martens, J.V. Humbeeck, P. Annaert, G.V.D. Mooter, and P. Augustijns. 2010. Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole. European Journal of Pharmaceutics and Biopharmaceutics 75: 354–365.

    Article  PubMed  Google Scholar 

  • Westesen, K., H. Bunjes, and M.H.J. Koch. 1997. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. Journal of Controlled Release 48: 223–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Chung-Ang University Research scholarship grants in 2009–2010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Taik Oh or Kyung Teak Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.W., Yun, J.M., Lee, E.S. et al. A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid. Arch. Pharm. Res. 36, 1369–1376 (2013). https://doi.org/10.1007/s12272-013-0187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0187-2

Keywords

Navigation