Skip to main content
Log in

Künstliche Evolution des genetischen Codes von Mikroorganismen

BIOspektrum Aims and scope

Abstract

The experimental evolution of microorganisms to highly efficient pro - ducers of biomolecules has a long tradition in industrial biotechnology. Its combination with synthetic biology and xenobiology can be used for the creation of a new, artificial biodiversity. Here, we describe evolution experiments for the development of robust bacterial strains harboring a new chemical composition of their proteomes. These strains might be beneficial for the production of amino acid modified proteins/peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mutzel R, Marlière P (2010) Experimentelle Evolution in vivo in kontinuierlicher Suspensionskultur. BIOspektrum 6:660–662

    Google Scholar 

  3. Hoesl MG, Oehm S, Durkin P et al. (2015) Chemical evolution of a bacterial proteome. Angew Chem Int Ed Engl 54:10030–10034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agostini F, Völler JS, Koksch B et al. (2017) Xenobiology meets enzymology: exploring the potential of unnatural building blocks in biocatalysis. Angew Chem Int Ed Engl, doi: 10.1002/anie.201610129

  5. Baumann T, Nickling JH, Bartholomae M et al. (2017) Prospects of in vivo incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides. Front Microbiol 8:124

    Article  PubMed  PubMed Central  Google Scholar 

  6. Budisa N (2013) Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Curr Opin Biotechnol 24:591–598

    Article  CAS  PubMed  Google Scholar 

  7. Kuthning A, Durkin P, Oehm S et al. (2016) Towards biocontained cell factories: an evolutionarily adapted Escherichia coli strain produces a new-to-nature bioactive lantibiotic containing thienopyrrole-alanine. Sci Rep 6:33447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang HH, Isaacs FJ, Carr PA et al. (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472:499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Budisa N (2014) Xenobiology, new-to-nature synthetic cells and genetic firewall. Curr Org Chem 18:936–943

    Article  CAS  Google Scholar 

  11. Mandell DJ, Lajoie MJ, Mee MT et al. (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rovner AJ, Haimovich AD, Katz SR (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Acevedo-Rocha CG, Budisa N (2011) On the road towards chemically modified organisms endowed with a genetic firewall. Angew Chem Int Ed Engl 50:6960–6962

    Article  CAS  PubMed  Google Scholar 

  14. Acevedo-Rocha CG, Budisa N (2016) Xenomicrobiology: a roadmap for genetic code engineering. Microb Biotechnol 9:666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nediljko Budisa.

Additional information

Jan-Stefan Völler Jahrgang 1985. Chemie - studium an der TU Berlin. 2016 Promotion an der FU Berlin am Institut für Chemie und Biochemie in der Gruppe von Prof. Dr. B. Koksch. Seit 2016 Postdoc an der TU Berlin am Institut für Chemie im Arbeitskreis Biokatalyse von Prof. Dr. N. Budisa.

Michael Georg Hösl Jahrgang 1982. Studium der Molekularen Biotechnologie an der TU München. 2011 Promotion am Max-Planck-Institut für Biochemie, Martinsried, in der Gruppe von Prof. Dr. N. Budisa. 2011–2013 Postdoc an der TU Berlin im Arbeitskreis Biokatalyse von Prof. Dr. N. Budisa. 2014–2016 Wissenschaftler und seit 2017 Gruppenleiter Biochemie im Biotechnologiezentrum der Clariant Produkte (Deutschland) GmbH in Planegg.

Nediljko Budisa Jahrgang 1966. Studium der Biologie, Chemie, molekularen Biologie und molekularen Biophysik an der Universität Zagreb, Kroatien. 1997 Promotion. 1997–2000 Postdoc am Max-Planck-Institut für Biochemie, Martinsried. 2001–2005 Habilitation in Biochemie an der TU München. 2004 BioFuture-Nachwuchspreis des BMBF. 2005–2010 Arbeitsgruppenleiter am Max-Planck-Institut für Biochemie, Martinsried. Seit 2010 W3-Professor (Biokatalyse) an der TU Berlin am Institut für Chemie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Völler, JS., Hoesl, M.G. & Budisa, N. Künstliche Evolution des genetischen Codes von Mikroorganismen. Biospektrum 23, 146–149 (2017). https://doi.org/10.1007/s12268-017-0779-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12268-017-0779-3

Navigation