Skip to main content

Advertisement

Log in

Statins Impair Survival of Primary Human Mesenchymal Progenitor Cells via Mevalonate Depletion, NF-κB Signaling, and Bnip3

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Circulating progenitor cells of bone marrow origin have been implicated in transplant cardiac allograft vasculopathy (CAV) and cardiac fibrosis. HMG-CoA reductase inhibitors, called “statins,” have been shown to impair the progression of CAV and improve patient survival. We examined the in vitro effects of three HMG-CoA reductase inhibitors atorvastatin, simvastatin, and pravastatin on the viability of MSCs and expression of nuclear factor kappa B (NF-κB). Mesenchymal stem cells (MSCs) isolated from human patients were treated with atorvastatin, simvastatin, and pravastatin at 0.1, 1.0, or 10 μM ± mevalonate. Human MSC treatment with 1 and 10 μM simvastatin or atorvastatin resulted in progressively reduced cell viability, which was associated with a decline in NF-κB p65. Viability was rescued by co-incubation with mevalonate or by pretreatment with Inhibitor of nuclear factor kappa-B kinase subunit beta (Iκκ-β). Pravastatin did not affect MSC viability or NF-κB expression. Mevalonate depletion through HMG-CoA reductase inhibition impairs the viability of primary human MSC through down-regulating NF-κB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mills, E. J., Wu, P., & Chong, G. (2011). Efficacy and safety of statin treatment for cardiovascular disease: A network meta-analysis of 170 255 patients from 76 randomized trials. Quarterly Journal of Medicine, 104, 109–124.

    Article  CAS  Google Scholar 

  2. Liapis, C. D., Bell, P. R., Mikhailidis, D., et al. (2009). ESVS guidelines. Invasive treatment for carotid stenosis: indications, techniques. European Journal of Vascular and Endovascular Surgery, 37, 1–19.

    Article  CAS  PubMed  Google Scholar 

  3. Liapis, C. D., Bell, P. R., Mikhailidis, D., et al. (2010). ESVS guidelines: Section A—prevention in patients with carotid stenosis. Current Vascular Pharmacology, 8, 673–681.

    Article  CAS  PubMed  Google Scholar 

  4. Tahara, N., Kai, H., Ishibashi, M., Nakuara, H., Kaida, H., Baba, K., Hayabuchi, N., & Imaizumi, T. (2006). Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission topography. Journal of the American College of Cardiology, 48, 1825–1831.

    Article  CAS  PubMed  Google Scholar 

  5. Sillesen, H. (2009). Statins and their use in preventing carotid disease. Current Atherosclerosis Reports, 11, 309–314.

    Article  CAS  PubMed  Google Scholar 

  6. Verzini, F., De, R. P., Parlani, G., Giordano, G., Caso, V., Cieri, E., Isernia, G., & Cao, P. (2011). Effects of statins on early and late results of coronary stenting. Journal of Vascular Surgery, 53, 71–79.

    Article  PubMed  Google Scholar 

  7. Kertai, M. D., Boersma, E., Westerhout, C. M., van Domburg, R., Klein, J., Bax, J. J., van Urk, H., & Poldermans, D. (2004). Association between long-term statin use and mortality after successful abdominal aortic aneurysm surgery. American Journal of Medicine, 116, 96–103.

    Article  CAS  PubMed  Google Scholar 

  8. Kalyanasundaram, A., Elmore, J. R., Manazer, J. R., Golden, A., Franklin, D. P., Galt, S. W., Zakhary, E. M., & Carey, D. J. (2006). Simvastatin suppresses experimental aortic aneurysm expansion. Journal of Vascular Surgery, 43, 117–124.

    Article  PubMed  Google Scholar 

  9. Schouten, O., van Laanen, J. H., Boersma, E., Vidakovic, R., Feringa, H. H., Dunkelgrün, M., Bax, J. J., Koning, J., van Urk, H., & Poldermans, D. (2006). Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. European Journal of Vascular and Endovascular Surgery, 32, 21–26.

    Article  CAS  PubMed  Google Scholar 

  10. Giri, J., McDermott, M. M., Greenland, P., Guralnik, J. M., Criqui, M. H., Liu, K., Ferrucci, L., Green, D., Schneider, J. R., & Tian, L. (2006). Statin use and functional decline in patients with and without peripheral artery disease. Journal of the American College of Cardiology, 47, 998–1004.

    Article  CAS  PubMed  Google Scholar 

  11. Heart Protection Study Group. (2007). Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20 536 people with peripheral arterial disease and other high-risk conditions. Journal of Vascular Surgery, 45, 645–654.

    Article  Google Scholar 

  12. Kobashigawa, J. A., Katznelson, S., Laks, H., et al. (1995). Effect of pravastatin on outcomes after cardiac transplantation. New England Journal of Medicine, 333, 621–627.

    Article  CAS  PubMed  Google Scholar 

  13. Nissen, S. E., Nicholls, S. J., Sipahi, I., et al. (2006). Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA, 295, 1556–1565.

    Article  CAS  PubMed  Google Scholar 

  14. Mehra, M. R., Uber, P. A., Vivekananthan, K., Solis, S., Scott, R. L., Park, M. H., Milani, R. V., & Lavie, C. J. (2002). Comparative beneficial effects of simvastatin and pravastatin on cardiac allograft rejection and survival. Journal of the American College of Cardiology, 40, 1609–1614.

    Article  CAS  PubMed  Google Scholar 

  15. Kobashigawa, J. A., Moriguchi, J. D., Laks, H., Wener, L., Hage, A., Hamilton, M. A., Cogert, G., Marquez, A., Vassilakis, M. E., Patel, J., & Yeatman, L. (2005). Ten-year follow-up of a randomized trial of pravastatin in heart transplant patients. Journal of Heart and Lung Transplantation, 24, 1736–1740.

    Article  PubMed  Google Scholar 

  16. Schachter, M. (2005). Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundamental and Clinical Pharmacology, 19, 117–125.

    Article  CAS  PubMed  Google Scholar 

  17. Bullano, M. F., Wertz, D. A., Yang, G. W., Kamat, S., Borok, G. M., Gandhi, S., McDonough, K. L., & Willey, V. J. (2006). Effect of rosuvastatin compared with other statins on lipid levels and national cholesterol education program goal attainment for low-density lipoprotein cholesterol in a usual care setting. Pharmacotherapy, 26, 469–478.

    Article  CAS  PubMed  Google Scholar 

  18. Lennernas, H., & Fager, G. (1997). Pharmacodynamis and pharmacokinetics of the HMG-CoA reductase inhibitors: Similarities and differences. Clinical Pharmacokinetics, 32, 403–425.

    Article  CAS  PubMed  Google Scholar 

  19. Singhvi, S. M., Pan, H. W., Morrison, R. A., & Willard, D. A. (1990). Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. British Journal of Clinical Pharmacology, 20, 239–243.

    Article  Google Scholar 

  20. Zhou, Z., Rahme, E., & Pilote, L. (2006). Are statins created equal? Evidence from randomized trials of pravastatin, simvastatin, and atorvastatin for cardiovascular disease prevention. American Heart Journal, 151, 273–281.

    Article  CAS  PubMed  Google Scholar 

  21. Sopel, M. J., Rosin, N. L., Lee, T. D., & Legare, J. F. (2011). Myocardial fibrosis in response to angiotensin II is preceded by the recruitment of mesenchymal progenitor cells. Laboratory Investigation, 91, 565–578.

    Article  CAS  PubMed  Google Scholar 

  22. van Amerognen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., van Luyn, M. J., & Harmsen, M. C. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. Journal of Pathology, 214, 377–386.

    Article  Google Scholar 

  23. Möllmann, H., Nef, H. M., Kostin, S., Von, K. C., Pilz, I., Weber, M., Schaper, J., Hamm, C. W., & Elsässer, A. (2006). Bone marrow-derived cells contribute to infarct remodelling. Cardiovascular Research, 71, 661–671.

    Article  PubMed  Google Scholar 

  24. Salama, M., Andrukhova, O., Roedler, S., Zuckermann, A., Laufer, G., & Aharinejad, S. (2011). Association of CD14+ monocyte-derived progenitor cells with cardiac allograft vasculopathy. Journal of Thoracic and Cardiovascular Surgery, 142, 1246–1253.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Carlson, S., Trial, J., Soeller, C., & Entman, M. L. (2011). Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovascular Research, 91, 99–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. van den Borne, S. W., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2010). Myocardial remodeling after infarction: The role of myofibroblasts. Nature Reviews Cardiology, 7, 30–37.

    Article  PubMed  Google Scholar 

  27. Hombach-Klonisch, S., Panigrahi, S., Rashedi, I., Seifert, A., Alberti, E., Pocar, P., Kurpisz, M., Schulze-Osthof, K., Mackiewicz, A., & Los, M. (2008). Adult stem cells and their trans-differentiation potential—Perspectives and therapeutic applications. Journal of Molecular Medicine, 86, 1301–1314.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739–2749.

    Article  CAS  PubMed  Google Scholar 

  29. Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229.

    Article  CAS  PubMed  Google Scholar 

  30. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  CAS  PubMed  Google Scholar 

  31. Bittira, B., Kuang, J. Q., Al-Khaldi, A., Shum-Tim, D., & Chiu, R. C. (2002). In vitro preprogramming of marrow stromal cells for myocardial regeneration. Annals of Thoracic Surgery, 74, 1154–1159.

    Article  PubMed  Google Scholar 

  32. Chedrawy, E. G., Wang, J. S., Nguyen, D. M., Shum-Tim, D., & Chiu, R. C. (2002). Incorporation and integration of implanted myogenic and stem cells into native myocardial fibers: Anatomic basis for functional improvements. Journal of Thoracic and Cardiovascular Surgery, 124, 584–590.

    Article  PubMed  Google Scholar 

  33. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668–673.

    Article  CAS  PubMed  Google Scholar 

  34. Bellini, A., & Mattoli, S. (2007). The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Laboratory Investigation, 87, 858–870.

    Article  CAS  PubMed  Google Scholar 

  35. Keeley, E. C., Mehrad, B., Janardhanan, R., Salerno, M., Hunter, J. R., Burdick, M. M., Field, J. J., Strieter, R. M., & Kramer, C. M. (2012). Elevated circulating fibrocyte levels in patients with hypertensive heart disease. Journal of Hypertension, 30, 1856–1861.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lei, P. P., Qu, Y. Q., Shuai, Q., Tao, S. M., Bao, Y. X., Wang, Y., Wang, S. W., & Wang, D. H. (2013). Fibrocytes are associated with the fibrosis of coronary heart disease. Pathology, Research and Practice, 209, 36–43.

    Article  CAS  PubMed  Google Scholar 

  37. Cox, N., Pilling, D., & Gomer, R. H. (2012). NaCl potentiates human fibrocyte differentiation. PLoS One, 7, e45674.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Buhaescu, I., & Izzedine, H. (2007). Mevalonate pathway: A review of clinical and therapeutical implications. Clinical Biochemistry, 40, 575–584.

    Article  CAS  PubMed  Google Scholar 

  39. Hilgendorff, A., Muth, H., Parviz, B., Staubitz, A., Haberbosch, W., Tillmanns, H., & Hölschermann, H. (2003). Statins differ in their ability to block NF-kappaB activation in human blood monocytes. International Journal of Clinical Pharmacology and Therapeutics, 41, 397–401.

    Article  CAS  PubMed  Google Scholar 

  40. Dhingra, R., Gang, H., Wang, Y., Biala, A. K., Aviv, Y., Margulets, V., Tee, A., & Kirshenbaum, L. A. (2013). Bidirectional regulation of nuclear factor- κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circulation. Heart Failure, 6, 335–343.

    Article  CAS  PubMed  Google Scholar 

  41. Friedernstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4, 267–274.

    Google Scholar 

  42. Caplan, A. I. (1991). Mesenchyma stem cells. Journal of Orthopaedic Research, 9, 641–650.

    Article  CAS  PubMed  Google Scholar 

  43. Sciarretta, S., Hariharan, N., Monden, Y., Zablocki, D., & Sadoshima, J. (2011). Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatric Cardiology, 32, 275–281.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wang, E. Y., Gang, H., Aviv, Y., Dhingra, R., Margulets, V., & Kirshenbaum, L. A. (2013). p53 mediates autophagy and cell death by a mechanism contingent on Bnip3. Hypertension, 62, 70–77.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y., Wang, L., Kikuiri, T., Akiyama, K., Chen, C., Xu, X., Yang, R., Chen, W., Wang, S., & Shi, S. (2011). Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nature Medicine, 17, 1594–1601.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Peng, C. F., Han, Y. L., Jie-Deng, Y. C. H., Jian-Kang, B.-L., & Jie-Li. (2011). Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-α-induced apoptosis via NFκB in mesenchymal stem cells. Biochemical and Biophysical Research Communications, 406, 601–607.

    Article  CAS  PubMed  Google Scholar 

  47. Kim, J. M., Cho, H. H., Lee, S. Y., Hong, C. P., Yang, J. W., Kim, Y. S., Suh, K. T., & Jung, J. S. (2012). Role of IRAK1 on TNF-induced proliferation and NFκB activation in human bone marrow mesenchymal stem cells. Cellular Physiology and Biochemistry, 30, 46–60.

    Google Scholar 

  48. Gauthaman, K., Fong, C. Y., & Bongso, A. (2009). Statins, stem cells, and cancer. Journal of Cellular Biochemistry, 106, 975–983.

    Article  CAS  PubMed  Google Scholar 

  49. Patel, S., Mason, R. M., Suzuki, J., Imaizumi, A., Kamimura, T., & Zhang, Z. (2006). Inhibitory effect of statins on renal epithelial-to-mesenchymal transition. American Journal of Nephrology, 26, 381–387.

    Article  CAS  PubMed  Google Scholar 

  50. Piotrowski, P. C., Kwintkiewicz, J., Rzepczynska, I. J., Seval, Y., Cakmak, H., Arici, A., & Duleba, A. J. (2006). Statins inhibit growth of human endometrial stromal cells independently of cholesterol availability. Biology of Reproduction, 75, 107–111.

    Article  CAS  PubMed  Google Scholar 

  51. Shao, H., Tan, Y., Eton, D., Yang, Z., Uberti, M. G., Li, S., Schulick, A., & Yu, H. (2008). Statin and stromal cell-derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells, 26, 1376–1384.

    Article  CAS  PubMed  Google Scholar 

  52. Assmus, B., Urbich, C., Aicher, A., Hofmann, W. K., Haendeler, J., Rössig, L., Spyridopoulos, I., Zeiher, A. M., & Dimmeler, S. (2003). HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circulation Research, 92, 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  53. Satoh, M., Minami, Y., Takahashi, Y., Tabuchi, T., Itoh, T., & Nakamura, M. (2009). Effect of intensive lipid-lowering therapy on telomere erosion in endothelial progenitor cells obtained from patients with coronary artery disease. Clinical Science (London), 116, 827–835.

    Article  CAS  Google Scholar 

  54. Zhang, Y., Zhang, R., Li, Y., He, G., Zhang, D., & Zhang, F. (2012). Simvastatin augments the efficacy of therapeutic angiogenesis induced by bone-marrow-derived mesenchymal stem cells in a murine model of hindlimb ischemia. Molecular Biology Reports, 39, 285–293.

    Article  PubMed  Google Scholar 

  55. Xu, H., Yang, Y. J., Qian, H. Y., Tang, Y. D., Wang, H., & Zhang, Q. (2011). Rosuvastatin treatment activates JAK-STAT pathway and increases efficacy of allogenic mesenchymal stem cell transplantation in infracted hearts. Circulation Journal, 75, 1476–1485.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Q., Yang, Y. J., Wang, H., Dong, Q. T., Wang, T. J., Qian, H. Y., & Xu, H. (2012). Autophagy activation: a novel mechanism of atrovastatin to protect mesenchymal stem cell from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells and Development, 21, 1321–1332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Disclosures

Atorvastatin was provided by Pfizer. No other disclosures.

Informed Consent

This study utilized bone marrow obtained solely from informed patients who gave consent under ethics approved by the Bannatyne Campus Research Ethics Board of the University of Manitoba.

Animal Research

No animal studies were carried out by the authors for this article.

Sources of Funding

Funding was provided by the St. Boniface Hospital Foundation, Canadian Institutes of Health Research, and the University of Manitoba Department of Surgery. The experiments performed in this manuscript complied with the laws of Canada where the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren H. Freed.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Müller, A.L., Ngo, M.A. et al. Statins Impair Survival of Primary Human Mesenchymal Progenitor Cells via Mevalonate Depletion, NF-κB Signaling, and Bnip3. J. of Cardiovasc. Trans. Res. 8, 96–105 (2015). https://doi.org/10.1007/s12265-014-9603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9603-3

Keywords

Navigation