, Volume 7, Issue 5, pp 507-517,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 28 Mar 2014

Model of the Distribution of Diastolic Left Ventricular Posterior Wall Thickness in Healthy Adults and Its Impact on the Behavior of a String of Virtual Cardiomyocytes

Abstract

Correlation of the thickness of the left ventricular posterior wall (LVPWd) with various parameters, including age, gender, weight and height, was investigated in this study using regression models. Multicenter derived database comprised over 4,000 healthy individuals. The developed models were further utilized in the in vitro–in vivo (IVIV) translation of the drug cardiac safety data with use of the mathematical model of human cardiomyocytes operating at the virtual healthy population level. LVPWd was assumed to be equivalent to the length of one-dimensional string of virtual cardiomyocyte cells which was presented, as other physiological factors, to be a parameter influencing the simulated pseudo-ECG (pseudoelectrocardiogram), QTcF and ∆QTcF, both native and modified by exemplar drug (disopyramide) after I Kr current disruption. Simulation results support positive correlation between the LVPWd and QTcF/∆QTc. Developed models allow more detailed description of the virtual population and thus inter-individual variability influence on the drug cardiac safety.

Editor-in-Chief Jennifer L. Hall oversaw the review of this article