Skip to main content
Log in

Effects of testosterone and estradiol on anxiety and depressive-like behavior via a non-genomic pathway

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Besides their known slow genomic effects, testosterone and estradiol have rapid effects in the brain. However, their impact on mood-related behavior is not clear. The aim of this study was to investigate the non-genomic pathway of testosterone and estradiol in the amygdala in relation to anxiety and depressive-like behavior. Sham-operated and gonadectomized male rats (GDX) supplemented with testosterone propionate, estradiol, or olive oil were used. Five minutes after administration, anxiety and depression-like behavior were tested. Estradiol increased anxiolytic behavior in the open-field test compared to the GDX group, but administration of testosterone had no significant effect. Besides, c-Fos expression in the medial nucleus of the amygdala significantly increased after testosterone treatment compared to the GDX group, while no significant difference was observed in the central and the basolateral nuclei of the amygdala in the testosterone-treated group compared to the GDX group. In conclusion, estradiol had an anxiolytic effect via a rapid pathway, but no rapid effect of testosterone on anxiety was found. Further studies elucidating whether the rapid effect is mediated by a non-genomic pathway are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Maggi A, Ciana P, Belcredito S, Vegeto E. Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu Rev Physiol 2004, 66: 291–313.

    Article  CAS  PubMed  Google Scholar 

  2. McEwen BS. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci 1991, 12: 141–147.

    Article  CAS  PubMed  Google Scholar 

  3. Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol 2008, 29: 169–181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Heinlein M. Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signaling. Curr Opin Plant Biol 2002, 5: 543–552.

    Article  CAS  PubMed  Google Scholar 

  5. Carrier N, Kabbaj M. Extracellular signal-regulated kinase 2 signaling in the hippocampal dentate gyrus mediates the antidepressant effects of testosterone. Biol Psychiatry 2012, 71: 642–651.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Buddenberg TE, Komorowski M, Ruocco LA, Silva MA, Topic B. Attenuating effects of testosterone on depressive-like behavior in the forced swim test in healthy male rats. Brain Res Bull 2009, 79: 182–186.

    Article  CAS  PubMed  Google Scholar 

  7. Hodosy J, Zelmanova D, Majzunova M, Filova B, Malinova M, Ostatnikova D, et al. The anxiolytic effect of testosterone in the rat is mediated via the androgen receptor. Pharmacol Biochem Behav 2012, 102: 191–195.

    Article  CAS  PubMed  Google Scholar 

  8. Frye CA, Walf AA. Depression-like behavior of aged male and female mice is ameliorated with administration of testosterone or its metabolites. Physiol Behav 2009, 97: 266–269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bitran D, Kellogg CK, Hilvers RJ. Treatment with an anabolic-androgenic steroid affects anxiety-related behavior and alters the sensitivity of cortical GABAA receptors in the rat. Horm Behav 1993, 27: 568–583.

    Article  CAS  PubMed  Google Scholar 

  10. Aikey JL, Nyby JG, Anmuth DM, James PJ. Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav 2002, 42: 448–460.

    Article  CAS  PubMed  Google Scholar 

  11. Edinger KL, Frye CA. Testosterone’s analgesic, anxiolytic, and cognitive-enhancing effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Behav Neurosci 2004, 118: 1352–1364.

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Guasti A, Martinez-Mota L. Anxiolytic-like actions of testosterone in the burying behavior test: role of androgen and GABA-benzodiazepine receptors. Psychoneuroendocrinology 2005, 30: 762–770.

    Article  CAS  PubMed  Google Scholar 

  13. Frye CA, Rhodes ME, Dudek B. Estradiol to aged female or male mice improves learning in inhibitory avoidance and water maze tasks. Brain Res 2005, 1036: 101–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Walf AA, Frye CA. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology 2006, 31: 1097–1111.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Galea LA, Lee TT, Kostaras X, Sidhu JA, Barr AM. High levels of estradiol impair spatial performance in the Morris water maze and increase ‘depressive-like’ behaviors in the female meadow vole. Physiol Behav 2002, 77: 217–225.

    Article  CAS  PubMed  Google Scholar 

  16. Morgan MA, Pfaff DW. Effects of estrogen on activity and fear-related behaviors in mice. Horm Behav 2001, 40: 472–482.

    Article  CAS  PubMed  Google Scholar 

  17. Walf AA, Frye CA. Rapid and estrogen receptor beta mediated actions in the hippocampus mediate some functional effects of estrogen. Steroids 2008, 73: 997–1007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Filova B, Ostatnikova D, Celec P, Hodosy J. The effect of testosterone on the formation of brain structures. Cells Tissues Organs 2013, 197: 169–177.

    Article  CAS  PubMed  Google Scholar 

  19. Kovacs KJ. Measurement of immediate-early gene activation-c-fos and beyond. J Neuroendocrinol 2008, 20: 665–672.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffman GE, Smith MS, Verbalis JG. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 1993, 14: 173–213.

    Article  CAS  PubMed  Google Scholar 

  21. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011, 471: 358–362.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rubinow DR, Schmidt PJ. Androgens, brain, and behavior. Am J Psychiatry 1996, 153: 974–984.

    Article  CAS  PubMed  Google Scholar 

  23. Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, et al. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 2003, 144: 2055–2067.

    Article  CAS  PubMed  Google Scholar 

  24. Sarkey S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D, DonCarlos LL. Classical androgen receptors in non-classical sites in the brain. Horm Behav 2008, 53: 753–764.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Walf AA, Frye CA. Estradiol reduces anxiety- and depression-like behavior of aged female mice. Physiol Behav 2010, 99: 169–174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Michels G, Hoppe UC. Rapid actions of androgens. Front Neuroendocrinol 2008, 29: 182–198.

    Article  CAS  PubMed  Google Scholar 

  27. Nabekura J, Oomura Y, Minami T, Mizuno Y, Fukuda A. Mechanism of the rapid effect of 17 beta-estradiol on medial amygdala neurons. Science 1986, 233: 226–228.

    Article  CAS  PubMed  Google Scholar 

  28. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 2003, 463: 3–33.

    Article  CAS  PubMed  Google Scholar 

  29. Ennaceur A, Michalikova S, Chazot PL. Models of anxiety: responses of rats to novelty in an open space and an enclosed space. Behav Brain Res 2006, 171: 26–49.

    Article  CAS  PubMed  Google Scholar 

  30. Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1980, 13: 167–170.

    Article  CAS  PubMed  Google Scholar 

  31. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977, 229: 327–336.

    CAS  PubMed  Google Scholar 

  32. Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates, 6th ed. New York: Academic Press, 2007: 456.

    Google Scholar 

  33. Gonzalez MI, Farabollini F, Albonetti E, Wilson CA. Interactions between 5-hydroxytryptamine (5-HT) and testosterone in the control of sexual and nonsexual behaviour in male and female rats. Pharmacol Biochem Behav 1994, 47: 591–601.

    Article  CAS  PubMed  Google Scholar 

  34. Minkin DM, Meyer ME, van Haaren F. Behavioral effects of long-term administration of an anabolic steroid in intact and castrated male Wistar rats. Pharmacol Biochem Behav 1993, 44: 959–963.

    Article  CAS  PubMed  Google Scholar 

  35. Balthazart J, Baillien M, Ball GF. Rapid control of brain aromatase activity by glutamatergic inputs. Endocrinology 2006, 147: 359–366.

    Article  CAS  PubMed  Google Scholar 

  36. Diaz-Veliz G, Alarcon T, Espinoza C, Dussaubat N, Mora S. Ketanserin and anxiety levels: influence of gender, estrous cycle, ovariectomy and ovarian hormones in female rats. Pharmacol Biochem Behav 1997, 58: 637–642.

    Article  CAS  PubMed  Google Scholar 

  37. Trainor BC, Finy MS, Nelson RJ. Rapid effects of estradiol on male aggression depend on photoperiod in reproductively non-responsive mice. Horm Behav 2008, 53: 192–199.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Vasudevan N, Pfaff DW. Membrane-initiated actions of estrogens in neuroendocrinology: emerging principles. Endocr Rev 2007, 28: 1–19.

    Article  CAS  PubMed  Google Scholar 

  39. Duncan GE, Knapp DJ, Breese GR. Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Res 1996, 713: 79–91.

    Article  CAS  PubMed  Google Scholar 

  40. Heinlein CA, Chang C. The roles o f androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 2002, 16: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  41. Nagypal A, Wood RI. Region-specific mechanisms for testosterone-induced Fos in hamster brain. Brain Res 2007, 1141: 197–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kovacs KJ, Sawchenko PE. Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 1996, 16: 262–273.

    CAS  PubMed  Google Scholar 

  43. Vasudevan N, Pfaff DW. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 2008, 29: 238–257.

    Article  CAS  PubMed  Google Scholar 

  44. Nyby JG. Reflexive testosterone release: a model system for studying the nongenomic effects of testosterone upon male behavior. Front Neuroendocrinol 2008, 29: 199–210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Cornil CA, Taziaux M, Baillien M, Ball GF, Balthazart J. Rapid effects of aromatase inhibition on male reproductive behaviors in Japanese quail. Horm Behav 2006, 49: 45–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Cross E, Roselli CE. 17beta-estradiol rapidly facilitates chemoinvestigation and mounting in castrated male rats. Am J Physiol 1999, 276: R1346–1350.

    CAS  PubMed  Google Scholar 

  47. Malmnas CO. Short-latency effect of testosterone on copulatory behaviour and ejaculation in sexually experienced intact male rats. J Reprod Fertil 1977, 51: 351–354.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Hodosy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filova, B., Malinova, M., Babickova, J. et al. Effects of testosterone and estradiol on anxiety and depressive-like behavior via a non-genomic pathway. Neurosci. Bull. 31, 288–296 (2015). https://doi.org/10.1007/s12264-014-1510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1510-8

Keywords

Navigation